forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_amazon_product_data.py
103 lines (97 loc) · 3.51 KB
/
get_amazon_product_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
"""
This file provides a function which will take a product name as input from the user,
and fetch from Amazon information about products of this name or category. The product
information will include title, URL, price, ratings, and the discount available.
"""
from itertools import zip_longest
import requests
from bs4 import BeautifulSoup
from pandas import DataFrame
def get_amazon_product_data(product: str = "laptop") -> DataFrame:
"""
Take a product name or category as input and return product information from Amazon
including title, URL, price, ratings, and the discount available.
"""
url = f"https://www.amazon.in/laptop/s?k={product}"
header = {
"User-Agent": (
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36"
"(KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36"
),
"Accept-Language": "en-US, en;q=0.5",
}
soup = BeautifulSoup(
requests.get(url, headers=header, timeout=10).text, features="lxml"
)
# Initialize a Pandas dataframe with the column titles
data_frame = DataFrame(
columns=[
"Product Title",
"Product Link",
"Current Price of the product",
"Product Rating",
"MRP of the product",
"Discount",
]
)
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
"div",
attrs={"class": "s-result-item", "data-component-type": "s-search-result"},
),
soup.find_all("div", attrs={"class": "a-row a-size-base a-color-base"}),
):
try:
product_title = item.h2.text
product_link = "https://www.amazon.in/" + item.h2.a["href"]
product_price = item.find("span", attrs={"class": "a-offscreen"}).text
try:
product_rating = item.find("span", attrs={"class": "a-icon-alt"}).text
except AttributeError:
product_rating = "Not available"
try:
product_mrp = (
"₹"
+ item.find(
"span", attrs={"class": "a-price a-text-price"}
).text.split("₹")[1]
)
except AttributeError:
product_mrp = ""
try:
discount = float(
(
(
float(product_mrp.strip("₹").replace(",", ""))
- float(product_price.strip("₹").replace(",", ""))
)
/ float(product_mrp.strip("₹").replace(",", ""))
)
* 100
)
except ValueError:
discount = float("nan")
except AttributeError:
continue
data_frame.loc[str(len(data_frame.index))] = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
data_frame.loc[
data_frame["Current Price of the product"] > data_frame["MRP of the product"],
"MRP of the product",
] = " "
data_frame.loc[
data_frame["Current Price of the product"] > data_frame["MRP of the product"],
"Discount",
] = " "
data_frame.index += 1
return data_frame
if __name__ == "__main__":
product = "headphones"
get_amazon_product_data(product).to_csv(f"Amazon Product Data for {product}.csv")