-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper_funcs.py
69 lines (55 loc) · 2.33 KB
/
helper_funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import requests
import json
import torch
from requests.exceptions import ConnectionError
import os
import time
import csv
########## Helper Functions ###########
####### Function to get precision of all trainable layers(layers with weights) of the CNN ######
def get_layer_precision_in_dict(layer_data, trainable_layer_indices):
layer_precision = {}
for layer_index in trainable_layer_indices:
for i in range(0, len(layer_data), 2):
layer_precision[layer_index] = layer_data[i].dtype
return layer_precision
####### Function to read precision settings from a json file #######
def get_precision_settings():
try:
with open('precision_settings.json', 'r') as file:
return json.load(file)
except FileNotFoundError:
print('Precision Settings File Does Not Exist \n')
print('Continuing training with default precision \n')
return None
####### Function to convert the data read from the json file to a suitable dictionary format ########
def convert_dict(precision_dict, trainable_indices):
converted_dict = {}
for key in precision_dict.keys():
converted_dict[trainable_indices[int(key) - 1]] = eval(precision_dict[key])
return converted_dict
####### Function to send the metrics to the flask app for display on the webpage #######
def send_metrics(loss, accuracy, batch_time):
data = {
'loss': loss,
'accuracy': accuracy,
'batch_time': batch_time
}
try:
response = requests.post('http://localhost:5000/update_metrics', json=data)
return response
except ConnectionError as ce:
return None
####### Function to log the training data to a csv file ########
def log_training_data(epoch, batch_idx, loss, accuracy, batch_time, precision_dict, csv_filename):
if not os.path.isfile(csv_filename):
with open(csv_filename, 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['Epoch', 'Batch', 'Loss', 'Accuracy', 'Batch_Training_Time', 'Precison_Settings'])
with open(csv_filename, 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow([epoch, batch_idx, loss, accuracy, batch_time, precision_dict])
####### Function to delete the json file once the training is complete #######
def clean_json():
if os.path.exists('precision_settings.json'):
os.remove('precision_settings.json')