-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbase_runner.py
43 lines (37 loc) · 1.41 KB
/
base_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
import torch
class BaseAttentionRunnerModule:
def __init__(self):
self._layers = []
@property
def layers(self):
return self._layers
def set_params(self, params):
offset = 0
for index, layer in enumerate(self._layers):
weights_to_set = {}
weight_dict = layer.state_dict()
for k in sorted(weight_dict.keys()):
weight = weight_dict[k].numpy()
weight_size = weight.size
weights_to_set[k] = torch.from_numpy(
params[offset:(offset + weight_size)].reshape(weight.shape))
offset += weight_size
self._layers[index].load_state_dict(state_dict=weights_to_set)
def get_params(self):
params = []
for layer in self._layers:
weight_dict = layer.state_dict()
for k in sorted(weight_dict.keys()):
params.append(weight_dict[k].numpy().copy().ravel())
return np.concatenate(params)
def get_num_params_per_layer(self):
num_params_per_layer = []
for layer in self._layers:
weight_dict = layer.state_dict()
num_params = 0
for k in sorted(weight_dict.keys()):
weights = weight_dict[k].numpy()
num_params += weights.size
num_params_per_layer.append(num_params)
return num_params_per_layer