forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stl_util.h
991 lines (908 loc) · 37.5 KB
/
stl_util.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_BASE_STL_UTIL_H_
#define OR_TOOLS_BASE_STL_UTIL_H_
#include <stddef.h>
#include <string.h>
#include <algorithm>
#include <cassert>
#include <deque>
#include <forward_list>
#include <functional>
#include <iterator>
#include <list>
#include <map>
#include <memory>
#include <string>
#include <type_traits>
#include <vector>
#include "absl/meta/type_traits.h"
#include "absl/strings/internal/resize_uninitialized.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/macros.h"
namespace gtl {
namespace internal {
template <typename LessFunc>
class Equiv {
public:
explicit Equiv(const LessFunc& f) : f_(f) {}
template <typename T>
bool operator()(const T& a, const T& b) const {
return !f_(b, a) && !f_(a, b);
}
private:
LessFunc f_;
};
} // namespace internal
// Sorts and removes duplicates from a sequence container.
// If specified, the 'less_func' is used to compose an
// equivalence comparator for the sorting and uniqueness tests.
template <typename T, typename LessFunc>
inline void STLSortAndRemoveDuplicates(T* v, const LessFunc& less_func) {
std::sort(v->begin(), v->end(), less_func);
v->erase(std::unique(v->begin(), v->end(),
gtl::internal::Equiv<LessFunc>(less_func)),
v->end());
}
template <typename T>
inline void STLSortAndRemoveDuplicates(T* v) {
std::sort(v->begin(), v->end());
v->erase(std::unique(v->begin(), v->end()), v->end());
}
// Stable sorts and removes duplicates from a sequence container, retaining
// the first equivalent element for each equivalence set.
// The 'less_func' is used to compose an equivalence comparator for the sorting
// and uniqueness tests.
template <typename T, typename LessFunc>
inline void STLStableSortAndRemoveDuplicates(T* v, const LessFunc& less_func) {
std::stable_sort(v->begin(), v->end(), less_func);
v->erase(std::unique(v->begin(), v->end(),
gtl::internal::Equiv<LessFunc>(less_func)),
v->end());
}
// Stable sorts and removes duplicates from a sequence container, retaining
// the first equivalent element for each equivalence set, using < comparison and
// == equivalence testing.
template <typename T>
inline void STLStableSortAndRemoveDuplicates(T* v) {
std::stable_sort(v->begin(), v->end());
v->erase(std::unique(v->begin(), v->end()), v->end());
}
// Remove every occurrence of element e in v. See
// http://en.wikipedia.org/wiki/Erase-remove_idiom.
template <typename T, typename E>
void STLEraseAllFromSequence(T* v, const E& e) {
v->erase(std::remove(v->begin(), v->end(), e), v->end());
}
template <typename T, typename A, typename E>
void STLEraseAllFromSequence(std::list<T, A>* c, const E& e) {
c->remove(e);
}
template <typename T, typename A, typename E>
void STLEraseAllFromSequence(std::forward_list<T, A>* c, const E& e) {
c->remove(e);
}
// Remove each element e in v satisfying pred(e).
template <typename T, typename P>
void STLEraseAllFromSequenceIf(T* v, P pred) {
v->erase(std::remove_if(v->begin(), v->end(), pred), v->end());
}
template <typename T, typename A, typename P>
void STLEraseAllFromSequenceIf(std::list<T, A>* c, P pred) {
c->remove_if(pred);
}
template <typename T, typename A, typename P>
void STLEraseAllFromSequenceIf(std::forward_list<T, A>* c, P pred) {
c->remove_if(pred);
}
// Clears internal memory of an STL object by swapping the argument with a new,
// empty object. STL clear()/reserve(0) does not always free internal memory
// allocated.
template <typename T>
void STLClearObject(T* obj) {
T tmp;
tmp.swap(*obj);
// This reserve(0) is needed because "T tmp" sometimes allocates memory (arena
// implementation?), even though this may not always work.
obj->reserve(0);
}
// STLClearObject overload for deque, which is missing reserve().
template <typename T, typename A>
void STLClearObject(std::deque<T, A>* obj) {
std::deque<T, A> tmp;
tmp.swap(*obj);
}
// Calls STLClearObject() if the object is bigger than the specified limit,
// otherwise calls the object's clear() member. This can be useful if you want
// to allow the object to hold on to its allocated memory as long as it's not
// too much.
//
// Note: The name is misleading since the object is always cleared, regardless
// of its size.
template <typename T>
inline void STLClearIfBig(T* obj, size_t limit = 1 << 20) {
if (obj->capacity() >= limit) {
STLClearObject(obj);
} else {
obj->clear();
}
}
// STLClearIfBig overload for deque, which is missing capacity().
template <typename T, typename A>
inline void STLClearIfBig(std::deque<T, A>* obj, size_t limit = 1 << 20) {
if (obj->size() >= limit) {
STLClearObject(obj);
} else {
obj->clear();
}
}
// Removes all elements and reduces the number of buckets in a hash_set or
// hash_map back to the default if the current number of buckets is "limit" or
// more.
//
// Adding items to a hash container may add buckets, but removing items or
// calling clear() does not necessarily reduce the number of buckets. Having
// lots of buckets is good if you insert comparably many items in every
// iteration because you'll reduce collisions and table resizes. But having lots
// of buckets is bad if you insert few items in most subsequent iterations,
// because repeatedly clearing out all those buckets can get expensive.
//
// One solution is to call STLClearHashIfBig() with a "limit" value that is a
// small multiple of the typical number of items in your table. In the common
// case, this is equivalent to an ordinary clear. In the rare case where you
// insert a lot of items, the number of buckets is reset to the default to keep
// subsequent clear operations cheap. Note that the default number of buckets is
// 193 in the Gnu library implementation as of Jan '08.
template <typename T>
inline void STLClearHashIfBig(T* obj, size_t limit) {
if (obj->bucket_count() >= limit) {
T tmp;
tmp.swap(*obj);
} else {
obj->clear();
}
}
// Reserves space in the given string only if the existing capacity is not
// already enough. This is useful for strings because string::reserve() may
// *shrink* the capacity in some cases, which is usually not what users want.
// The behavior of this function is similar to that of vector::reserve() but for
// string.
inline void STLStringReserveIfNeeded(std::string* s, size_t min_capacity) {
if (min_capacity > s->capacity()) s->reserve(min_capacity);
}
// Like str->resize(new_size), except any new characters added to "*str" as a
// result of resizing may be left uninitialized, rather than being filled with
// '0' bytes. Typically used when code is then going to overwrite the backing
// store of the string with known data.
template <typename T, typename Traits, typename Alloc>
inline void STLStringResizeUninitialized(std::basic_string<T, Traits, Alloc>* s,
size_t new_size) {
absl::strings_internal::STLStringResizeUninitialized(s, new_size);
}
// Returns true if the string implementation supports a resize where
// the new characters added to the string are left untouched.
//
// (A better name might be "STLStringSupportsUninitializedResize", alluding to
// the previous function.)
template <typename T, typename Traits, typename Alloc>
inline bool STLStringSupportsNontrashingResize(
const std::basic_string<T, Traits, Alloc>& s) {
return absl::strings_internal::STLStringSupportsNontrashingResize(&s);
}
// Assigns the n bytes starting at ptr to the given string. This is intended to
// be faster than string::assign() in SOME cases, however, it's actually slower
// in some cases as well.
//
// Just use string::assign directly unless you have benchmarks showing that this
// function makes your code faster. (Even then, a future version of
// string::assign() may be faster than this.)
inline void STLAssignToString(std::string* str, const char* ptr, size_t n) {
STLStringResizeUninitialized(str, n);
if (n == 0) return;
memcpy(&*str->begin(), ptr, n);
}
// Appends the n bytes starting at ptr to the given string. This is intended to
// be faster than string::append() in SOME cases, however, it's actually slower
// in some cases as well.
//
// Just use string::append directly unless you have benchmarks showing that this
// function makes your code faster. (Even then, a future version of
// string::append() may be faster than this.)
inline void STLAppendToString(std::string* str, const char* ptr, size_t n) {
if (n == 0) return;
size_t old_size = str->size();
STLStringResizeUninitialized(str, old_size + n);
memcpy(&*str->begin() + old_size, ptr, n);
}
// Returns a mutable char* pointing to a string's internal buffer, which may not
// be null-terminated. Returns nullptr for an empty string. If not non-null,
// writing through this pointer will modify the string.
//
// string_as_array(&str)[i] is valid for 0 <= i < str.size() until the
// next call to a string method that invalidates iterators.
//
// In C++11 you may simply use &str[0] to get a mutable char*.
//
// Prior to C++11, there was no standard-blessed way of getting a mutable
// reference to a string's internal buffer. The requirement that string be
// contiguous is officially part of the C++11 standard [string.require]/5.
// According to Matt Austern, this should already work on all current C++98
// implementations.
inline char* string_as_array(std::string* str) {
// DO NOT USE const_cast<char*>(str->data())! See the unittest for why.
return str->empty() ? nullptr : &*str->begin();
}
// Tests two hash maps/sets for equality. This exists because operator== in the
// STL can return false when the maps/sets contain identical elements. This is
// because it compares the internal hash tables which may be different if the
// order of insertions and deletions differed.
template <typename HashSet>
inline bool HashSetEquality(const HashSet& set_a, const HashSet& set_b) {
if (set_a.size() != set_b.size()) return false;
for (typename HashSet::const_iterator i = set_a.begin(); i != set_a.end();
++i)
if (set_b.find(*i) == set_b.end()) return false;
return true;
}
// WARNING: Using HashMapEquality for multiple-associative containers like
// multimap and hash_multimap will result in wrong behavior.
template <typename HashMap, typename BinaryPredicate>
inline bool HashMapEquality(const HashMap& map_a, const HashMap& map_b,
BinaryPredicate mapped_type_equal) {
if (map_a.size() != map_b.size()) return false;
for (typename HashMap::const_iterator i = map_a.begin(); i != map_a.end();
++i) {
typename HashMap::const_iterator j = map_b.find(i->first);
if (j == map_b.end()) return false;
if (!mapped_type_equal(i->second, j->second)) return false;
}
return true;
}
// We overload for 'map' without a specialized functor and simply use its
// operator== function.
template <typename K, typename V, typename C, typename A>
inline bool HashMapEquality(const std::map<K, V, C, A>& map_a,
const std::map<K, V, C, A>& map_b) {
return map_a == map_b;
}
template <typename HashMap>
inline bool HashMapEquality(const HashMap& a, const HashMap& b) {
using Mapped = typename HashMap::mapped_type;
return HashMapEquality(a, b, std::equal_to<Mapped>());
}
// Calls delete (non-array version) on pointers in the range [begin, end).
//
// Note: If you're calling this on an entire container, you probably want to
// call STLDeleteElements(&container) instead (which also clears the container),
// or use an ElementDeleter.
template <typename ForwardIterator>
void STLDeleteContainerPointers(ForwardIterator begin, ForwardIterator end) {
while (begin != end) {
auto temp = begin;
++begin;
delete *temp;
}
}
// Calls delete (non-array version) on BOTH items (pointers) in each pair in the
// range [begin, end).
template <typename ForwardIterator>
void STLDeleteContainerPairPointers(ForwardIterator begin,
ForwardIterator end) {
while (begin != end) {
auto temp = begin;
++begin;
delete temp->first;
delete temp->second;
}
}
// Calls delete (non-array version) on the FIRST item (pointer) in each pair in
// the range [begin, end).
template <typename ForwardIterator>
void STLDeleteContainerPairFirstPointers(ForwardIterator begin,
ForwardIterator end) {
while (begin != end) {
auto temp = begin;
++begin;
delete temp->first;
}
}
// Calls delete (non-array version) on the SECOND item (pointer) in each pair in
// the range [begin, end).
//
// Note: If you're calling this on an entire container, you probably want to
// call STLDeleteValues(&container) instead, or use ValueDeleter.
template <typename ForwardIterator>
void STLDeleteContainerPairSecondPointers(ForwardIterator begin,
ForwardIterator end) {
while (begin != end) {
auto temp = begin;
++begin;
delete temp->second;
}
}
// Deletes all the elements in an STL container and clears the container. This
// function is suitable for use with a vector, set, hash_set, or any other STL
// container which defines sensible begin(), end(), and clear() methods.
//
// If container is nullptr, this function is a no-op.
//
// As an alternative to calling STLDeleteElements() directly, consider
// ElementDeleter (defined below), which ensures that your container's elements
// are deleted when the ElementDeleter goes out of scope.
template <typename T>
void STLDeleteElements(T* container) {
if (!container) return;
STLDeleteContainerPointers(container->begin(), container->end());
container->clear();
}
// Given an STL container consisting of (key, value) pairs, STLDeleteValues
// deletes all the "value" components and clears the container. Does nothing in
// the case it's given a nullptr.
template <typename T>
void STLDeleteValues(T* v) {
if (!v) return;
(STLDeleteContainerPairSecondPointers)(v->begin(), v->end());
v->clear();
}
// A very simple interface that simply provides a virtual destructor. It is used
// as a non-templated base class for the TemplatedElementDeleter and
// TemplatedValueDeleter classes.
//
// Clients should NOT use this class directly.
class BaseDeleter {
public:
virtual ~BaseDeleter() {}
BaseDeleter(const BaseDeleter&) = delete;
void operator=(const BaseDeleter&) = delete;
protected:
BaseDeleter() {}
};
// Given a pointer to an STL container, this class will delete all the element
// pointers when it goes out of scope.
//
// Clients should NOT use this class directly. Use ElementDeleter instead.
template <typename STLContainer>
class TemplatedElementDeleter : public BaseDeleter {
public:
explicit TemplatedElementDeleter(STLContainer* ptr) : container_ptr_(ptr) {}
virtual ~TemplatedElementDeleter() { STLDeleteElements(container_ptr_); }
TemplatedElementDeleter(const TemplatedElementDeleter&) = delete;
void operator=(const TemplatedElementDeleter&) = delete;
private:
STLContainer* container_ptr_;
};
// ElementDeleter is an RAII (go/raii) object that deletes the elements in the
// given container when it goes out of scope. This is similar to
// std::unique_ptr<> except that a container's elements will be deleted rather
// than the container itself.
//
// Example:
// std::vector<MyProto*> tmp_proto;
// ElementDeleter d(&tmp_proto);
// if (...) return false;
// ...
// return success;
//
// Since C++11, consider using containers of std::unique_ptr instead.
class ElementDeleter {
public:
template <typename STLContainer>
explicit ElementDeleter(STLContainer* ptr)
: deleter_(new TemplatedElementDeleter<STLContainer>(ptr)) {}
~ElementDeleter() { delete deleter_; }
ElementDeleter(const ElementDeleter&) = delete;
void operator=(const ElementDeleter&) = delete;
private:
BaseDeleter* deleter_;
};
// Given a pointer to an STL container this class will delete all the value
// pointers when it goes out of scope.
//
// Clients should NOT use this class directly. Use ValueDeleter instead.
template <typename STLContainer>
class TemplatedValueDeleter : public BaseDeleter {
public:
explicit TemplatedValueDeleter(STLContainer* ptr) : container_ptr_(ptr) {}
virtual ~TemplatedValueDeleter() { STLDeleteValues(container_ptr_); }
TemplatedValueDeleter(const TemplatedValueDeleter&) = delete;
void operator=(const TemplatedValueDeleter&) = delete;
private:
STLContainer* container_ptr_;
};
// ValueDeleter is an RAII (go/raii) object that deletes the 'second' member in
// the given container of std::pair<>s when it goes out of scope.
//
// Example:
// std::map<std::string, Foo*> foo_map;
// ValueDeleter d(&foo_map);
// if (...) return false;
// ...
// return success;
class ValueDeleter {
public:
template <typename STLContainer>
explicit ValueDeleter(STLContainer* ptr)
: deleter_(new TemplatedValueDeleter<STLContainer>(ptr)) {}
~ValueDeleter() { delete deleter_; }
ValueDeleter(const ValueDeleter&) = delete;
void operator=(const ValueDeleter&) = delete;
private:
BaseDeleter* deleter_;
};
// RAII (go/raii) object that deletes elements in the given container when it
// goes out of scope. Like ElementDeleter (above) except that this class is
// templated and doesn't have a virtual destructor.
//
// New code should prefer ElementDeleter.
template <typename STLContainer>
class STLElementDeleter {
public:
STLElementDeleter(STLContainer* ptr) : container_ptr_(ptr) {}
~STLElementDeleter() { STLDeleteElements(container_ptr_); }
private:
STLContainer* container_ptr_;
};
// RAII (go/raii) object that deletes the values in the given container of
// std::pair<>s when it goes out of scope. Like ValueDeleter (above) except that
// this class is templated and doesn't have a virtual destructor.
//
// New code should prefer ValueDeleter.
template <typename STLContainer>
class STLValueDeleter {
public:
STLValueDeleter(STLContainer* ptr) : container_ptr_(ptr) {}
~STLValueDeleter() { STLDeleteValues(container_ptr_); }
private:
STLContainer* container_ptr_;
};
// Sets the referenced pointer to nullptr and returns its original value. This
// can be a convenient way to remove a pointer from a container to avoid the
// eventual deletion by an ElementDeleter.
//
// Example:
//
// std::vector<Foo*> v{new Foo, new Foo, new Foo};
// ElementDeleter d(&v);
// Foo* safe = release_ptr(&v[1]);
// // v[1] is now nullptr and the Foo it previously pointed to is now
// // stored in "safe"
template <typename T>
ABSL_MUST_USE_RESULT T* release_ptr(T** ptr) {
assert(ptr);
T* tmp = *ptr;
*ptr = nullptr;
return tmp;
}
namespace stl_util_internal {
// Like std::less, but allows heterogeneous arguments.
struct TransparentLess {
template <typename T>
bool operator()(const T& a, const T& b) const {
// std::less is better than '<' here, because it can order pointers.
return std::less<T>()(a, b);
}
template <typename T1, typename T2>
bool operator()(const T1& a, const T2& b) const {
return a < b;
}
};
// Trait to detect whether a type T is an hash table.
// The heuristic used is that the type contains an inner type `hasher` and does
// not contain an inner type `reverse_iterator`.
// If the container is iterable in reverse, then order might actually matter.
template <typename, typename = void, typename = void>
struct Unordered : std::false_type {};
template <typename T>
struct Unordered<T, absl::void_t<typename T::hasher>> : std::true_type {};
template <typename T>
struct Unordered<T, absl::void_t<typename T::hasher>,
absl::void_t<typename T::reverse_iterator>> : std::false_type {
};
} // namespace stl_util_internal
// STLSetDifference:
//
// In1 STLSetDifference(a, b);
// In1 STLSetDifference(a, b, compare);
// void STLSetDifference(a, b, &out);
// void STLSetDifference(a, b, &out, compare);
// Out STLSetDifferenceAs<Out>(a, b);
// Out STLSetDifferenceAs<Out>(a, b, compare);
//
// Appends the elements in "a" that are not in "b" to an output container.
// Optionally specify a comparator, or '<' is used by default. Both input
// containers must be sorted with respect to the comparator. If specified,
// the output container must be distinct from both "a" and "b".
//
// If an output container pointer is not given, a container will be returned
// by value. The return type can be explicitly specified by calling
// STLSetDifferenceAs, but it defaults to the type of argument "a".
//
// See std::set_difference() for details on how set difference is computed.
//
// The form taking 4 arguments. All other forms call into this one.
// Explicit comparator, append to output container.
template <typename In1, typename In2, typename Out, typename Compare>
void STLSetDifference(const In1& a, const In2& b, Out* out, Compare compare) {
static_assert(!gtl::stl_util_internal::Unordered<In1>::value,
"In1 must be an ordered set");
static_assert(!gtl::stl_util_internal::Unordered<In2>::value,
"In2 must be an ordered set");
assert(std::is_sorted(a.begin(), a.end(), compare));
assert(std::is_sorted(b.begin(), b.end(), compare));
assert(static_cast<const void*>(&a) != static_cast<const void*>(out));
assert(static_cast<const void*>(&b) != static_cast<const void*>(out));
std::set_difference(a.begin(), a.end(), b.begin(), b.end(),
std::inserter(*out, out->end()), compare);
}
// Append to output container, Implicit comparator.
// Note: The 'enable_if' keeps this overload from participating in
// overload resolution if 'out' is a function pointer, gracefully forcing
// the 3-argument overload that treats the third argument as a comparator.
template <typename In1, typename In2, typename Out>
typename std::enable_if<!std::is_function<Out>::value, void>::type
STLSetDifference(const In1& a, const In2& b, Out* out) {
STLSetDifference(a, b, out, gtl::stl_util_internal::TransparentLess());
}
// Explicit comparator, explicit return type.
template <typename Out, typename In1, typename In2, typename Compare>
Out STLSetDifferenceAs(const In1& a, const In2& b, Compare compare) {
Out out;
STLSetDifference(a, b, &out, compare);
return out;
}
// Implicit comparator, explicit return type.
template <typename Out, typename In1, typename In2>
Out STLSetDifferenceAs(const In1& a, const In2& b) {
return STLSetDifferenceAs<Out>(a, b,
gtl::stl_util_internal::TransparentLess());
}
// Explicit comparator, implicit return type.
template <typename In1, typename In2, typename Compare>
In1 STLSetDifference(const In1& a, const In2& b, Compare compare) {
return STLSetDifferenceAs<In1>(a, b, compare);
}
// Implicit comparator, implicit return type.
template <typename In1, typename In2>
In1 STLSetDifference(const In1& a, const In2& b) {
return STLSetDifference(a, b, gtl::stl_util_internal::TransparentLess());
}
template <typename In1>
In1 STLSetDifference(const In1& a, const In1& b) {
return STLSetDifference(a, b, gtl::stl_util_internal::TransparentLess());
}
// STLSetUnion:
//
// In1 STLSetUnion(a, b);
// In1 STLSetUnion(a, b, compare);
// void STLSetUnion(a, b, &out);
// void STLSetUnion(a, b, &out, compare);
// Out STLSetUnionAs<Out>(a, b);
// Out STLSetUnionAs<Out>(a, b, compare);
// Appends the elements in one or both of the input containers to output
// container "out". Both input containers must be sorted with operator '<',
// or with the comparator if specified. "out" must be distinct from both "a"
// and "b".
//
// See std::set_union() for how set union is computed.
template <typename In1, typename In2, typename Out, typename Compare>
void STLSetUnion(const In1& a, const In2& b, Out* out, Compare compare) {
static_assert(!gtl::stl_util_internal::Unordered<In1>::value,
"In1 must be an ordered set");
static_assert(!gtl::stl_util_internal::Unordered<In2>::value,
"In2 must be an ordered set");
assert(std::is_sorted(a.begin(), a.end(), compare));
assert(std::is_sorted(b.begin(), b.end(), compare));
assert(static_cast<const void*>(&a) != static_cast<const void*>(out));
assert(static_cast<const void*>(&b) != static_cast<const void*>(out));
std::set_union(a.begin(), a.end(), b.begin(), b.end(),
std::inserter(*out, out->end()), compare);
}
// Note: The 'enable_if' keeps this overload from participating in
// overload resolution if 'out' is a function pointer, gracefully forcing
// the 3-argument overload that treats the third argument as a comparator.
template <typename In1, typename In2, typename Out>
typename std::enable_if<!std::is_function<Out>::value, void>::type STLSetUnion(
const In1& a, const In2& b, Out* out) {
return STLSetUnion(a, b, out, gtl::stl_util_internal::TransparentLess());
}
template <typename Out, typename In1, typename In2, typename Compare>
Out STLSetUnionAs(const In1& a, const In2& b, Compare compare) {
Out out;
STLSetUnion(a, b, &out, compare);
return out;
}
template <typename Out, typename In1, typename In2>
Out STLSetUnionAs(const In1& a, const In2& b) {
return STLSetUnionAs<Out>(a, b, gtl::stl_util_internal::TransparentLess());
}
template <typename In1, typename In2, typename Compare>
In1 STLSetUnion(const In1& a, const In2& b, Compare compare) {
return STLSetUnionAs<In1>(a, b, compare);
}
template <typename In1, typename In2>
In1 STLSetUnion(const In1& a, const In2& b) {
return STLSetUnion(a, b, gtl::stl_util_internal::TransparentLess());
}
template <typename In1>
In1 STLSetUnion(const In1& a, const In1& b) {
return STLSetUnion(a, b, gtl::stl_util_internal::TransparentLess());
}
// STLSetSymmetricDifference:
//
// In1 STLSetSymmetricDifference(a, b);
// In1 STLSetSymmetricDifference(a, b, compare);
// void STLSetSymmetricDifference(a, b, &out);
// void STLSetSymmetricDifference(a, b, &out, compare);
// Out STLSetSymmetricDifferenceAs<Out>(a, b);
// Out STLSetSymmetricDifferenceAs<Out>(a, b, compare);
//
// Appends the elements in "a" that are not in "b", and the elements in "b"
// that are not in "a", to output container "out". Both input containers
// must be sorted with operator '<', or with the comparator if specified.
// "out" must be distinct from both "a" and "b".
//
// See std::set_symmetric_difference() for how these elements are selected.
template <typename In1, typename In2, typename Out, typename Compare>
void STLSetSymmetricDifference(const In1& a, const In2& b, Out* out,
Compare compare) {
static_assert(!gtl::stl_util_internal::Unordered<In1>::value,
"In1 must be an ordered set");
static_assert(!gtl::stl_util_internal::Unordered<In2>::value,
"In2 must be an ordered set");
assert(std::is_sorted(a.begin(), a.end(), compare));
assert(std::is_sorted(b.begin(), b.end(), compare));
assert(static_cast<const void*>(&a) != static_cast<const void*>(out));
assert(static_cast<const void*>(&b) != static_cast<const void*>(out));
std::set_symmetric_difference(a.begin(), a.end(), b.begin(), b.end(),
std::inserter(*out, out->end()), compare);
}
// Note: The 'enable_if' keeps this overload from participating in
// overload resolution if 'out' is a function pointer, gracefully forcing
// the 3-argument overload that treats the third argument as a comparator.
template <typename In1, typename In2, typename Out>
typename std::enable_if<!std::is_function<Out>::value, void>::type
STLSetSymmetricDifference(const In1& a, const In2& b, Out* out) {
return STLSetSymmetricDifference(a, b, out,
gtl::stl_util_internal::TransparentLess());
}
template <typename Out, typename In1, typename In2, typename Compare>
Out STLSetSymmetricDifferenceAs(const In1& a, const In2& b, Compare comp) {
Out out;
STLSetSymmetricDifference(a, b, &out, comp);
return out;
}
template <typename Out, typename In1, typename In2>
Out STLSetSymmetricDifferenceAs(const In1& a, const In2& b) {
return STLSetSymmetricDifferenceAs<Out>(
a, b, gtl::stl_util_internal::TransparentLess());
}
template <typename In1, typename In2, typename Compare>
In1 STLSetSymmetricDifference(const In1& a, const In2& b, Compare comp) {
return STLSetSymmetricDifferenceAs<In1>(a, b, comp);
}
template <typename In1, typename In2>
In1 STLSetSymmetricDifference(const In1& a, const In2& b) {
return STLSetSymmetricDifference(a, b,
gtl::stl_util_internal::TransparentLess());
}
template <typename In1>
In1 STLSetSymmetricDifference(const In1& a, const In1& b) {
return STLSetSymmetricDifference(a, b,
gtl::stl_util_internal::TransparentLess());
}
// STLSetIntersection:
//
// In1 STLSetIntersection(a, b);
// In1 STLSetIntersection(a, b, compare);
// void STLSetIntersection(a, b, &out);
// void STLSetIntersection(a, b, &out, compare);
// Out STLSetIntersectionAs<Out>(a, b);
// Out STLSetIntersectionAs<Out>(a, b, compare);
//
// Appends the elements that are in both "a" and "b" to output container
// "out". Both input containers must be sorted with operator '<' or with
// "compare" if specified. "out" must be distinct from both "a" and "b".
//
// See std::set_intersection() for how set intersection is computed.
template <typename In1, typename In2, typename Out, typename Compare>
void STLSetIntersection(const In1& a, const In2& b, Out* out, Compare compare) {
static_assert(!gtl::stl_util_internal::Unordered<In1>::value,
"In1 must be an ordered set");
static_assert(!gtl::stl_util_internal::Unordered<In2>::value,
"In2 must be an ordered set");
assert(std::is_sorted(a.begin(), a.end(), compare));
assert(std::is_sorted(b.begin(), b.end(), compare));
assert(static_cast<const void*>(&a) != static_cast<const void*>(out));
assert(static_cast<const void*>(&b) != static_cast<const void*>(out));
std::set_intersection(a.begin(), a.end(), b.begin(), b.end(),
std::inserter(*out, out->end()), compare);
}
// Note: The 'enable_if' keeps this overload from participating in
// overload resolution if 'out' is a function pointer, gracefully forcing
// the 3-argument overload that treats the third argument as a comparator.
template <typename In1, typename In2, typename Out>
typename std::enable_if<!std::is_function<Out>::value, void>::type
STLSetIntersection(const In1& a, const In2& b, Out* out) {
return STLSetIntersection(a, b, out,
gtl::stl_util_internal::TransparentLess());
}
template <typename Out, typename In1, typename In2, typename Compare>
Out STLSetIntersectionAs(const In1& a, const In2& b, Compare compare) {
Out out;
STLSetIntersection(a, b, &out, compare);
return out;
}
template <typename Out, typename In1, typename In2>
Out STLSetIntersectionAs(const In1& a, const In2& b) {
return STLSetIntersectionAs<Out>(a, b,
gtl::stl_util_internal::TransparentLess());
}
template <typename In1, typename In2, typename Compare>
In1 STLSetIntersection(const In1& a, const In2& b, Compare compare) {
return STLSetIntersectionAs<In1>(a, b, compare);
}
template <typename In1, typename In2>
In1 STLSetIntersection(const In1& a, const In2& b) {
return STLSetIntersection(a, b, gtl::stl_util_internal::TransparentLess());
}
template <typename In1>
In1 STLSetIntersection(const In1& a, const In1& b) {
return STLSetIntersection(a, b, gtl::stl_util_internal::TransparentLess());
}
// Returns true iff every element in "b" is also in "a". Both containers
// must be sorted by the specified comparator, or by '<' if none is given.
template <typename In1, typename In2, typename Compare>
bool STLIncludes(const In1& a, const In2& b, Compare compare) {
static_assert(!gtl::stl_util_internal::Unordered<In1>::value,
"In1 must be an ordered set");
static_assert(!gtl::stl_util_internal::Unordered<In2>::value,
"In2 must be an ordered set");
assert(std::is_sorted(a.begin(), a.end(), compare));
assert(std::is_sorted(b.begin(), b.end(), compare));
return std::includes(a.begin(), a.end(), b.begin(), b.end(), compare);
}
template <typename In1, typename In2>
bool STLIncludes(const In1& a, const In2& b) {
return STLIncludes(a, b, gtl::stl_util_internal::TransparentLess());
}
// SortedRangesHaveIntersection:
//
// bool SortedRangesHaveIntersection(begin1, end1, begin2, end2);
// bool SortedRangesHaveIntersection(begin1, end1, begin2, end2,
// comparator);
//
// Returns true iff any element in the sorted range [begin1, end1) is
// equivalent to any element in the sorted range [begin2, end2). The iterators
// themselves do not have to be the same type, but the value types must be
// sorted either by the specified comparator, or by '<' if no comparator is
// given.
// [Two elements a,b are considered equivalent if !(a < b) && !(b < a) ].
template <typename InputIterator1, typename InputIterator2, typename Comp>
bool SortedRangesHaveIntersection(InputIterator1 begin1, InputIterator1 end1,
InputIterator2 begin2, InputIterator2 end2,
Comp comparator) {
assert(std::is_sorted(begin1, end1, comparator));
assert(std::is_sorted(begin2, end2, comparator));
while (begin1 != end1 && begin2 != end2) {
if (comparator(*begin1, *begin2)) {
++begin1;
continue;
}
if (comparator(*begin2, *begin1)) {
++begin2;
continue;
}
return true;
}
return false;
}
template <typename InputIterator1, typename InputIterator2>
bool SortedRangesHaveIntersection(InputIterator1 begin1, InputIterator1 end1,
InputIterator2 begin2, InputIterator2 end2) {
return SortedRangesHaveIntersection(
begin1, end1, begin2, end2, gtl::stl_util_internal::TransparentLess());
}
// Returns true iff the ordered containers 'in1' and 'in2' have a non-empty
// intersection. The container elements do not have to be the same type, but the
// elements must be sorted either by the specified comparator, or by '<' if no
// comparator is given.
template <typename In1, typename In2, typename Comp>
bool SortedContainersHaveIntersection(const In1& in1, const In2& in2,
Comp comparator) {
return SortedRangesHaveIntersection(in1.begin(), in1.end(), in2.begin(),
in2.end(), comparator);
}
template <typename In1, typename In2>
bool SortedContainersHaveIntersection(const In1& in1, const In2& in2) {
return SortedContainersHaveIntersection(
in1, in2, gtl::stl_util_internal::TransparentLess());
}
// An std::allocator<T> subclass that keeps count of the active bytes allocated
// by this class of allocators. This allocator is thread compatible
// (go/thread-compatible). This should only be used in situations where you can
// ensure that only a single thread performs allocation and deallocation.
//
// Example:
// using MyAlloc = STLCountingAllocator<std::string>;
// int64 bytes = 0;
// std::vector<std::string, MyAlloc> v(MyAlloc(&bytes));
// v.push_back("hi");
// LOG(INFO) << "Bytes allocated " << bytes;
//
template <typename T, typename Alloc = std::allocator<T>>
class STLCountingAllocator : public Alloc {
public:
using Base = Alloc;
using pointer = typename Alloc::pointer;
using size_type = typename Alloc::size_type;
STLCountingAllocator() : bytes_used_(nullptr) {}
explicit STLCountingAllocator(int64* b) : bytes_used_(b) {}
// Constructor used for rebinding
template <typename U, typename B>
STLCountingAllocator(const STLCountingAllocator<U, B>& x)
: Alloc(x), bytes_used_(x.bytes_used()) {}
pointer allocate(size_type n,
std::allocator<void>::const_pointer hint = nullptr) {
assert(bytes_used_ != nullptr);
*bytes_used_ += n * sizeof(T);
return Alloc::allocate(n, hint);
}
void deallocate(pointer p, size_type n) {
Alloc::deallocate(p, n);
assert(bytes_used_ != nullptr);
*bytes_used_ -= n * sizeof(T);
}
// Rebind allows an std::allocator<T> to be used for a different type
template <typename U>
class rebind {
using OtherA = typename Alloc::template rebind<U>::other;
public:
using other = STLCountingAllocator<U, OtherA>;
};
int64* bytes_used() const { return bytes_used_; }
private:
int64* bytes_used_;
};
template <typename A>
class STLCountingAllocator<void, A> : public A {
public:
STLCountingAllocator() : bytes_used_(nullptr) {}
explicit STLCountingAllocator(int64* b) : bytes_used_(b) {}
// Constructor used for rebinding
template <typename U, typename B>
STLCountingAllocator(const STLCountingAllocator<U, B>& x)
: A(x), bytes_used_(x.bytes_used()) {}
template <typename U>
class rebind {
using OtherA = typename A::template rebind<U>::other;
public:
using other = STLCountingAllocator<U, OtherA>;
};
int64* bytes_used() const { return bytes_used_; }
private:
int64* bytes_used_;
};
template <typename T, typename A>
bool operator==(const STLCountingAllocator<T, A>& a,
const STLCountingAllocator<T, A>& b) {
using Base = typename STLCountingAllocator<T, A>::Base;
return static_cast<const Base&>(a) == static_cast<const Base&>(b) &&
a.bytes_used() == b.bytes_used();
}
template <typename T, typename A>
bool operator!=(const STLCountingAllocator<T, A>& a,
const STLCountingAllocator<T, A>& b) {
return !(a == b);
}
} // namespace gtl
#endif // OR_TOOLS_BASE_STL_UTIL_H_