forked from JinmiaoChenLab/SEDR_analyses
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDLPFC.ARI_boxplot.R
executable file
·59 lines (46 loc) · 1.63 KB
/
DLPFC.ARI_boxplot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
library(dplyr)
library(Giotto)
library(Seurat)
library(ggplot2)
library(patchwork)
library(ggthemes)
library(ggpubr)
library(mclust)
options(bitmapType = 'cairo')
list.samples <- c("151507", "151508", "151509", "151510", "151669", "151670", "151671", "151672", "151673", "151674", "151675", "151676")
list.methods <- c( "Seurat", "Giotto", "stLearn", "SpaGCN", "BayesSpace", "SEDR")
# list.methods <- c( "Seurat", "stLearn", "SpaGCN", "BayesSpace", "SEDR")
##### Generate data
c1 <- c()
c2 <- c()
c3 <- c()
for (sample in list.samples) {
file.results <- file.path('../output/DLPFC/', sample, '/Comparison/comparison.tsv')
df.results <- read.table(file.results, sep='\t', header=T)
for (method in list.methods){
cluster <- df.results %>% select(c(method))
ARI <- adjustedRandIndex(x = df.results$layer_guess, y = cluster[, 1])
c1 <- c(c1, method)
c2 <- c(c2, sample)
c3 <- c(c3, ARI)
}
}
df.comp <- data.frame(method = c1,
sample = c2,
ARI = c3)
##### Plot results
df.comp$method <- as.factor(df.comp$method)
df.comp$method <- factor(df.comp$method,
levels = c('Seurat', 'Giotto', 'stLearn', 'SpaGCN', 'BayesSpace', 'SEDR'))
ggplot(df.comp, aes(method, ARI)) +
geom_boxplot(width=0.5) +
geom_jitter(width = 0.1, size=1) +
coord_flip() +
theme_bw() +
theme(panel.background = element_blank(),
panel.grid = element_blank(),
axis.title.y = element_blank(),
axis.text = element_text(size=14)
)
ggsave('../output/DLPFC/ARI_violin.png', width=4, height=4)
ggsave('../output/DLPFC/ARI_violin.pdf', width=4, height=4)