forked from QData/C-Tran
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
114 lines (91 loc) · 4.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import torch
import torch.nn as nn
import argparse,math,numpy as np
from load_data import get_data
from models import CTranModel
from models import CTranModelCub
from config_args import get_args
import utils.evaluate as evaluate
import utils.logger as logger
from pdb import set_trace as stop
from optim_schedule import WarmupLinearSchedule
from run_epoch import run_epoch
args = get_args(argparse.ArgumentParser())
print('Labels: {}'.format(args.num_labels))
print('Train Known: {}'.format(args.train_known_labels))
print('Test Known: {}'.format(args.test_known_labels))
train_loader,valid_loader,test_loader = get_data(args)
if args.dataset == 'cub':
model = CTranModelCub(args.num_labels,args.use_lmt,args.pos_emb,args.layers,args.heads,args.dropout,args.no_x_features)
print(model.self_attn_layers)
else:
model = CTranModel(args.num_labels,args.use_lmt,args.pos_emb,args.layers,args.heads,args.dropout,args.no_x_features)
print(model.self_attn_layers)
def load_saved_model(saved_model_name,model):
checkpoint = torch.load(saved_model_name)
model.load_state_dict(checkpoint['state_dict'])
return model
print(args.model_name)
if torch.cuda.device_count() > 1:
print("Using", torch.cuda.device_count(), "GPUs!")
model = nn.DataParallel(model)
model = model.cuda()
if args.inference:
model = load_saved_model(args.saved_model_name,model)
if test_loader is not None:
data_loader =test_loader
else:
data_loader =valid_loader
all_preds,all_targs,all_masks,all_ids,test_loss,test_loss_unk = run_epoch(args,model,data_loader,None,1,'Testing')
test_metrics = evaluate.compute_metrics(args,all_preds,all_targs,all_masks,test_loss,test_loss_unk,0,args.test_known_labels)
exit(0)
if args.freeze_backbone:
for p in model.module.backbone.parameters():
p.requires_grad=False
for p in model.module.backbone.base_network.layer4.parameters():
p.requires_grad=True
if args.optim == 'adam':
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()),lr=args.lr)#, weight_decay=0.0004)
else:
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, momentum=0.9, weight_decay=1e-4)
if args.warmup_scheduler:
step_scheduler = None
scheduler_warmup = WarmupLinearSchedule(optimizer, 1, 300000)
else:
scheduler_warmup = None
if args.scheduler_type == 'plateau':
step_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,mode='min',factor=0.1,patience=5)
elif args.scheduler_type == 'step':
step_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.scheduler_step, gamma=args.scheduler_gamma)
else:
step_scheduler = None
metrics_logger = logger.Logger(args)
loss_logger = logger.LossLogger(args.model_name)
for epoch in range(1,args.epochs+1):
print('======================== {} ========================'.format(epoch))
for param_group in optimizer.param_groups:
print('LR: {}'.format(param_group['lr']))
train_loader.dataset.epoch = epoch
################### Train #################
all_preds,all_targs,all_masks,all_ids,train_loss,train_loss_unk = run_epoch(args,model,train_loader,optimizer,epoch,'Training',train=True,warmup_scheduler=scheduler_warmup)
train_metrics = evaluate.compute_metrics(args,all_preds,all_targs,all_masks,train_loss,train_loss_unk,0,args.train_known_labels)
loss_logger.log_losses('train.log',epoch,train_loss,train_metrics,train_loss_unk)
################### Valid #################
all_preds,all_targs,all_masks,all_ids,valid_loss,valid_loss_unk = run_epoch(args,model,valid_loader,None,epoch,'Validating')
valid_metrics = evaluate.compute_metrics(args,all_preds,all_targs,all_masks,valid_loss,valid_loss_unk,0,args.test_known_labels)
loss_logger.log_losses('valid.log',epoch,valid_loss,valid_metrics,valid_loss_unk)
################### Test #################
if test_loader is not None:
all_preds,all_targs,all_masks,all_ids,test_loss,test_loss_unk = run_epoch(args,model,test_loader,None,epoch,'Testing')
test_metrics = evaluate.compute_metrics(args,all_preds,all_targs,all_masks,test_loss,test_loss_unk,0,args.test_known_labels)
else:
test_loss,test_loss_unk,test_metrics = valid_loss,valid_loss_unk,valid_metrics
loss_logger.log_losses('test.log',epoch,test_loss,test_metrics,test_loss_unk)
if step_scheduler is not None:
if args.scheduler_type == 'step':
step_scheduler.step(epoch)
elif args.scheduler_type == 'plateau':
step_scheduler.step(valid_loss_unk)
############## Log and Save ##############
best_valid,best_test = metrics_logger.evaluate(train_metrics,valid_metrics,test_metrics,epoch,0,model,valid_loss,test_loss,all_preds,all_targs,all_ids,args)
print(args.model_name)