forked from langnico/global-canopy-height-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_training.sh
executable file
·145 lines (124 loc) · 5.25 KB
/
run_training.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/bin/bash
#SBATCH --job-name=gchm_train
#SBATCH --gpus=rtx_2080_ti:1 # rtx_2080_ti:1 rtx_3090:1
#SBATCH --array=0 # --array=0-5%10
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=8
#SBATCH --mem-per-cpu=20G # this is muliplied by cpus-per-task AND ntasks
#SBATCH --time=0-48:00:00 # might take up to 350 hours on rtx_2080_ti
#SBATCH --output=/cluster/work/igp_psr/nlang/experiments/gchm/slurm_logs/slurm-%A_%a_%x.out
# Temporary disk space on the node
# #SBATCH --tmp=2400G
# Send email
#SBATCH --mail-type=ARRAY_TASKS # send email for each individual array task, otherwise only for the job array as a whole.
#SBATCH --mail-type=end # send email when job ends
#SBATCH --mail-type=fail # send email if job fails
# NOTE train: --cpus-per-task=8 --mem-per-cpu=20G (total max RAM 160GB)
# NOTE test: --cpus-per-task=18 --mem-per-cpu=21G (total max RAM 378 GB)
# Set path to repository
CODE_PATH="${HOME}/code/global-canopy-height-model-private"
cd ${CODE_PATH}
source gchm/bash/config.sh
# set wandb api key
source ${HOME}/.config_wandb
num_workers=8
# ----- CONFIGURATION -----
# Set fine-tune strategy after training from scratch
finetune_strategy="NONE" # Train from scratch
# finetune_strategy="FT_Lm_SRCB" # Fine-tune model with square root inverse class frequency re-weighting (class-balanced)
do_train=true # false: run validation only
# architecture
architecture="xceptionS2_08blocks_256"
input_lat_lon=True
long_skip=True
# dataset
merged_h5_files=true
if [ "${merged_h5_files}" = "true" ]; then
# shuffled samples
h5_dir=${GCHM_TRAINING_DATA_DIR}
data_stats_dir=${GCHM_TRAINING_DATA_DIR}/stats
else
h5_dir=${GCHM_TRAINING_DATA_DIR}/GLOBAL_GEDI_2019_2020/tiles
data_stats_dir=None
fi
# input patch dimensions
channels=12
patch_size=15
# loss
return_variance=True
loss_key='GNLL'
# optimizer
optimizer='ADAM'
base_learning_rate=1e-4
scheduler='MultiStepLR'
lr_milestones=( 400 700 )
max_grad_value=1e3
l2_lambda=0
batch_size=64
nb_epoch=1000
iterations_per_epoch=5000 # if None: one epoch corresponds to the full dataset len(dl_train)
# Note that SliceBatchSampler expects the samples to be shuffled already in the h5 file.
custom_sampler=SliceBatchSampler # None, SliceBatchSampler, BatchSampler
if [ "${merged_h5_files}" = "true" ]; then
train_tiles=None
val_tiles=None
else
# read tile name split from txt file with all tile names
tile_names_dir=${GCHM_TRAINING_DATA_DIR}/sentinel2_tilenames/${dataset}
readarray -t train_tiles < ${tile_names_dir}/tile_names_${dataset}_train.txt
readarray -t val_tiles < ${tile_names_dir}/tile_names_${dataset}_val.txt
train_tiles=${train_tiles[@]}
val_tiles=${val_tiles[@]}
fi
# NOTE: in deploy the model index is expected to start at 0
n_models=5
model_idx=$((SLURM_ARRAY_TASK_ID))
echo "model_idx: ${model_idx}"
echo 'h5_dir: ' ${h5_dir}
out_dir=${GCHM_TRAINING_EXPERIMENT_DIR}/model_${model_idx}/
# overwrite arguments for fine-tuning
if [[ "${finetune_strategy}" == "NONE" ]]; then
echo "Training from scratch"
base_model_dir="NONE"
model_weights_path=None
else
echo "Fine-tuning using strategy: ${finetune_strategy}"
nb_epoch=1150 # this will fine-tune for additional 150 epochs (after 1000 epochs were trained from scratch)
base_model_dir=${out_dir}
out_dir=${base_model_dir}/${finetune_strategy}
fi
echo 'out_dir:' ${out_dir}
${PYTHON} gchm/train_val.py --out_dir=${out_dir} \
--num_workers=${num_workers} \
--architecture=${architecture} \
--do_train=${do_train} \
--h5_dir=${h5_dir} \
--num_samples_statistics="1e6" \
--input_lat_lon=${input_lat_lon} \
--channels=${channels} \
--patch_size=${patch_size} \
--long_skip=${long_skip} \
--return_variance=${return_variance} \
--loss_key=${loss_key} \
--optimizer=${optimizer} \
--base_learning_rate=${base_learning_rate} \
--batch_size=${batch_size} \
--model_weights_path=${model_weights_path} \
--nb_epoch=${nb_epoch} \
--iterations_per_epoch=${iterations_per_epoch} \
--normalize_targets=True \
--train_tiles ${train_tiles} \
--val_tiles ${val_tiles} \
--data_stats_dir=${data_stats_dir} \
--weight_key=${weight_key} \
--merged_h5_files=${merged_h5_files} \
--region_name="GLOBAL_GEDI" \
--do_profile=False \
--max_grad_value=${max_grad_value} \
--debug=False \
--custom_sampler=${custom_sampler} \
--scheduler=${scheduler} \
--lr_milestones ${lr_milestones[@]} \
--l2_lambda=${l2_lambda} \
--finetune_strategy=${finetune_strategy} \
--base_model_dir=${base_model_dir}