-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattendance_manager.py
182 lines (162 loc) · 8.65 KB
/
attendance_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# importing libraries
import tkinter as tk
from tkinter import messagebox
import cv2
import os
import csv
import numpy as np
import pandas as pd
from attendance_helper import AttendanceHelper
attendance_helper = AttendanceHelper()
window = tk.Tk() # creates Tcl interpreter
window.title("Attendance Manager") # sets title bar
window.configure(background='white') # sets background color as white
# spans the widget and extend in one more row or column
window.grid_rowconfigure(0, weight=1)
window.grid_columnconfigure(0, weight=1)
# sets main label
message = tk.Label(window, text="Attendance Management System", bg="green", fg="white", width=50, height=3, font=('times', 30, 'bold'))
message.place(x=100, y=20)
# sets No label and its text
no_label = tk.Label(window, text="No", width=20, height=2, fg="green", bg="white", font=('times', 15, ' bold '))
no_label.place(x=310, y=200)
no_text = tk.Entry(window, width=20, bg="white", fg="green", font=('times', 15, ' bold '))
no_text.place(x=600, y=215)
# sets Name label and its text
name_label = tk.Label(window, text="Name", width=20, fg="green", bg="white", height=2, font=('times', 15, ' bold '))
name_label.place(x=320, y=300)
name_text = tk.Entry(window, width=20, bg="white", fg="green", font=('times', 15, ' bold '))
name_text.place(x=600, y=315)
# Take Photos is a function used for creating the sample of the images which is used for training the model. It takes 5 Images of every new user
def TakePhotos():
# No and Name is used for recognising the image
Id = (no_text.get())
name = (name_text.get())
# Checking if the ID is numeric and name is Alphabetical
if(AttendanceHelper.is_number(Id) and name.isalpha()):
# Opening the primary camera if you want to access the secondary camera you can mention the number as 1 inside the parenthesis
cam = cv2.VideoCapture(0)
# Specifying the path to haarcascade file
harcascadePath = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
# Creating the classier based on the haarcascade file.
detector = cv2.CascadeClassifier(harcascadePath)
# Initializing the sample number(No. of images) as 0
sampleNum = 0
while(True):
# Reading the video captures by camera frame by frame
ret, img = cam.read()
# Converting the image into grayscale as most of the processing is done in gray scale format
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# It converts the images in different sizes (decreases by 1.3 times) and 5 specifies the number of times scaling happens
faces = detector.detectMultiScale(gray, 1.3, 5)
# For creating a rectangle around the image
for (x, y, w, h) in faces:
# Specifying the coordinates of the image as well as color and thickness of the rectangle.
# Incrementing sample number for each image
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
sampleNum = sampleNum + 1
# Saving the captured face in the dataset folder training_images as the image needs to be trained are saved in this folder
cv2.imwrite(r"training_images\ " + name + "_" + Id + '_' + str(sampleNum) + ".jpg", gray[y:y + h, x:x + w])
# Display the frame that has been captured and drawn rectangle around it.
cv2.imshow('frame', img)
# Wait for 100 milliseconds
if cv2.waitKey(100) & 0xFF == ord('q'):
break
# Break if the sample number is more than 4
elif sampleNum > 4:
break
# Releasing the resources
cam.release()
# Closing all the windows
cv2.destroyAllWindows()
# Displaying message for the user
res = "Photos taken successfully for " + name
# Creating the entry for the user in a csv file
row = [Id, name]
with open(r'training_details\training_details.csv', 'a+') as csvFile:
writer = csv.writer(csvFile)
# Entry of the row in csv file
writer.writerow(row)
csvFile.close()
messagebox.showinfo("Info", res)
else:
if not(AttendanceHelper.is_number(Id)):
res = "Enter Numeric Id"
messagebox.showerror("Error", res)
if not(name.isalpha()):
res = "Enter Alphabetical Name"
messagebox.showerror("Error", res)
# Training the images saved in training image folder
def TrainImages():
# Local Binary Pattern Histogram is an Face Recognizer algorithm inside OpenCV module used for training the image dataset
recognizer = cv2.face.LBPHFaceRecognizer_create()
# Specifying the path for HaarCascade file
harcascadePath = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
# Creating detector for faces
detector = cv2.CascadeClassifier(harcascadePath)
# Saving the detected faces in variables
faces, Ids = AttendanceHelper.getImagesAndLabels("training_images")
# Saving the trained faces and their respective ID's in a model named as "trainer.yml".
recognizer.train(faces, np.array(Ids))
recognizer.save(r"training_image_labels\trainer.yml")
# Displaying the message
res = "Trained images successfully"
messagebox.showinfo("Info", res)
# For testing phase
def TrackImages():
recognizer = cv2.face.LBPHFaceRecognizer_create()
# Reading the trained model
recognizer.read(r"training_image_labels\trainer.yml")
harcascadePath = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
faceCascade = cv2.CascadeClassifier(harcascadePath)
# Getting the name from "training_details.csv"
df = pd.read_csv(r"training_details\training_details.csv", encoding='unicode_escape')
cam = cv2.VideoCapture(0)
font = cv2.FONT_HERSHEY_SIMPLEX
while True:
ret, im = cam.read()
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(gray, 1.2, 5)
for(x, y, w, h) in faces:
cv2.rectangle(im, (x, y), (x + w, y + h), (225, 0, 0), 2)
Id, conf = recognizer.predict(gray[y:y + h, x:x + w])
if(conf < 50):
aa = df.loc[df['Id'] == Id]['Name'].values
tt = str(Id)+"-"+aa
else:
Id = 'Unknown'
tt = str(Id)
if(conf > 75):
noOfFile = len(os.listdir("unknown_images"))+1
cv2.imwrite(r"unknown_images\image" +
str(noOfFile) + ".jpg", im[y:y + h, x:x + w])
cv2.putText(im, str(tt), (x, y + h),
font, 1, (255, 255, 255), 2)
cv2.imshow('im', im)
if (cv2.waitKey(1) == ord('q')):
break
cam.release()
cv2.destroyAllWindows()
# For checking attendance
def CheckAttendance():
images_folder = 'training_images' # folder path where our training images are stored, image name must start with person name
images, person_names = attendance_helper.appendImagesAndPeople(images_folder) # getting images and people in given path
known_face_encodings = attendance_helper.getFaceEncodings(images) # getting face encodings
selected_person = attendance_helper.captureVideo(known_face_encodings, person_names, 0, 0.25, (0,255,0), (255,255,255), 1, 1, 'webcam', 'q') # marking attendance in csv and saving attendance image and video
if selected_person:
msg = selected_person + " was successfully registered to the system"
messagebox.showinfo("Info", msg)
else:
msg = "The participant could not be registered in the system"
messagebox.showerror("Error", msg)
takePhotosBtn = tk.Button(window, text="Take Photos", command=TakePhotos, fg="white", bg="green", width=15, height=3, activebackground="Red", font=('times', 15, ' bold '))
takePhotosBtn.place(x=100, y=500)
checkAttendanceBtn = tk.Button(window, text="Check Attendance", command=CheckAttendance, fg="white", bg="green", width=15, height=3, activebackground="Red", font=('times', 15, ' bold '))
checkAttendanceBtn.place(x=350, y=500)
trainImagesBtn = tk.Button(window, text="Train Images", command=TrainImages, fg="white", bg="green", width=15, height=3, activebackground="Red", font=('times', 15, ' bold '))
trainImagesBtn.place(x=600, y=500)
testImagesBtn = tk.Button(window, text="Test Images", command=TrackImages, fg="white", bg="green", width=15, height=3, activebackground="Red", font=('times', 15, ' bold '))
testImagesBtn.place(x=850, y=500)
quitButton = tk.Button(window, text="Quit", command=window.destroy, fg="white", bg="green", width=15, height=3, activebackground="Red", font=('times', 15, ' bold '))
quitButton.place(x=1100, y=500)
window.mainloop()