-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmuvsfunc_numpy.py
2069 lines (1471 loc) · 79.2 KB
/
muvsfunc_numpy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
VapourSynth functions:
numpy_process (helper function)
numpy_process_val (helper function)
L0Smooth
L0GradientProjection
IEDD
DNCNN (backend: MXNet)
BNNMDenoise
FGS
FDD
SSFDeband
SigmaFilter
super_resolution (backend: MXNet/TensorFlow)
gaussian
PoissonMaskedMerge
NumPy functions:
L0Smooth_core
psf2otf
L0GradProj_core
IEDD_core
get_blockwise_view
BNNMDenoise_core
FGS_2D_core
FDD_2D_core
SSFDeband_core
SigmaFilter_core
super_resolution_core (backend: MXNet/TensorFlow)
gaussian_core
PoissonMaskedMerge_core
"""
import functools
import math
import vapoursynth as vs
from vapoursynth import core
import mvsfunc as mvf
import numpy as np
_is_api4: bool = hasattr(vs, "__api_version__") and vs.__api_version__.api_major == 4
def _get_array(frame, plane, read=True):
if not read and frame.readonly:
raise ValueError("Frame is readonly")
if _is_api4:
return frame[plane]
else:
if read:
return frame.get_read_array(plane)
else:
return frame.get_write_array(plane)
def numpy_process(clips, numpy_function, input_per_plane=True, output_per_plane=True, lock_source_array=True, omit_first_clip=False, channels_last=True, **fun_args):
"""Helper function for filtering clip in NumPy
Args:
clips: Input cilps.
It can also be a list of clips. If so, these clips will be passed to "numpy_function" in order.
The returned clip should has the same format as the first clip in the list.
numpy_function: Spatial function to process numpy data.
The format of the data provided to the function is "HWC"
(i.e. number of pixels in vertical(height), horizontal(width) dimension and channels respectively.),
if the length of the input data in the third dimension is greater than 1, or otherwise "HW".
It should be noted that the format of the data provided to the function not only depends on the data itself,
but also depends on the parameter "input_per_plane".
input_per_plane: (bool or list of bools) Whether to input the data to the "numpy_function" plane-wisely.
If not, all of the data in the current frame will be inputted simultaneously.
If the value for one clip is not specified, it will be set according to the value of previous clip.
Default is True.
output_per_plane: (bool) Whether to output the data of the "numpy_function" plane-wisely.
If not, all of the data in the current result will be outputted simultaneously.
Default is True.
lock_source_array: (bool) Whether to lock the source array to avoid unintentionally overwriting the data.
Default is True.
omit_first_clip: (bool) Whether the first clip in "clips" and "input_per_plane".
Useful for stuffs which alter the format of the input, for example, resize.
Default is False.
channels_last: (bool) Whether the shape of input to "numpy_function" should be "channels_last", a.k.a. "HWC".
If not, the shape of the input will be "channels_first", a.k.a. "CHW".
Default is True.
fun_args: (dict) Additional arguments passed to “numpy_function” in the form of keyword arguments.
Default is {}.
"""
funcName = 'numpy_process'
# The following code is modified from https://github.com/KotoriCANOE/MyTF/blob/master/utils/vshelper.py
def executor(n, f):
if not isinstance(f, list): # Cast "f" to list to simplify the code
f = [f]
fout = f[0].copy() # Requirment from std.ModifyFrame
if omit_first_clip:
f = f[1:]
if output_per_plane: # The data will be outputted plane-wisely
# pre-allocation
pre_stacked_clips = {}
for index, frame in enumerate(f):
if not input_per_plane[index]: # All planes of this clip will be passed through the function simultaneously
if frame.format.num_planes == 1: # It's a gray scale clip
pre_stacked_clips[index] = np.asarray(_get_array(frame, plane=0, read=True))
else: # It's a clip with multiple planes
planes_data = []
for p in range(frame.format.num_planes):
arr = np.asarray(_get_array(frame, plane=p, read=True))
planes_data.append(arr)
pre_stacked_clips[index] = np.stack(planes_data, axis=2 if channels_last else 0)
# plane-wise processing
for p in range(fout.format.num_planes):
inputs_data = []
for index, frame in enumerate(f):
if input_per_plane[index]: # Input the corresponding plane
current_input = np.asarray(_get_array(frame, plane=p, read=True))
else: # Use the pre-stacked frames
current_input = pre_stacked_clips[index]
current_input.flags.writeable = not lock_source_array # Lock the source data, making it read-only
inputs_data.append(current_input) # Collect the inputs
output_array = np.asarray(_get_array(fout, plane=p, read=False))
output_array[:] = numpy_function(*inputs_data, **fun_args)
else: # Process all planes of the output simultaneously
inputs_data = []
for frame in f:
if frame.format.num_planes == 1: # It's a gray scale clip
current_input = np.asarray(_get_array(frame, plane=0, read=True))
else: # It's's a clip with multiple planes
plane_list = []
for p in range(frame.format.num_planes):
arr = np.asarray(_get_array(frame, plane=p, read=True))
plane_list.append(arr)
current_input = np.stack(plane_list, axis=2 if channels_last else 0)
current_input.flags.writeable = not lock_source_array
inputs_data.append(current_input) # Collect the inputs
output = numpy_function(*inputs_data, **fun_args)
# Plane-wise copying
for p in range(fout.format.num_planes):
output_array = np.asarray(_get_array(fout, plane=p, read=False))
np.copyto(output_array, output[:, :, p] if channels_last else output[p, :, :])
return fout
# initialization
if not isinstance(clips, list):
clips = [clips]
if not isinstance(input_per_plane, list):
input_per_plane = [input_per_plane]
for i in range(len(clips) - len(input_per_plane)):
input_per_plane.append(input_per_plane[-1])
if clips[0].format.num_planes == 1:
output_per_plane = True
if len(clips) == 1 and omit_first_clip:
raise ValueError(': \"input\" must be False when only one clip is inputted')
if omit_first_clip:
input_per_plane = input_per_plane[1:]
# process
flt = core.std.ModifyFrame(clips[0], clips, executor)
return flt
def numpy_process_val(clip, numpy_function, props_name, per_plane=True, lock_source_array=True, **fun_args):
"""Helper function for filtering clip in NumPy
Args:
clip: Input cilp.
numpy_function: Spatial function to process numpy data. The output of the function should be single or multiple values.
The format of the data provided to the function is "HWC",
i.e. number of pixels in vertical(height), horizontal(width) dimension and channels respectively.
props_name: The name of property to be stored in each frame. It should be a list of strings.
per_plane: (bool) Whether to process data by plane. If not, data would be processed by frame.
Default is True.
lock_source_array: (bool) Whether to lock the source array to avoid unintentionally overwrite the data.
Default is True.
fun_args: (dict) Additional arguments passed to “numpy_function” in the form of keyword arguments.
Default is {}.
"""
# The following code is modified from https://github.com/KotoriCANOE/MyTF/blob/master/utils/vshelper.py
def FLT(n, f):
fout = f.copy()
planes = fout.format.num_planes
val = []
if per_plane:
for p in range(planes):
s = np.asarray(_get_array(f, plane=p, read=True))
if lock_source_array:
s.flags.writeable = False # Lock the source data, making it read-only
val.append(numpy_function(s, **fun_args))
else:
s_list = []
for p in range(planes):
arr = np.asarray(_get_array(f, plane=p, read=True)) # This is a 2-D array
s_list.append(arr)
s = np.stack(s_list, axis=2) # "s" is a 3-D array
if lock_source_array:
s.flags.writeable = False # Lock the source data, making it read-only
val.append(numpy_function(s, **fun_args))
for i, j in enumerate(val):
fout.props[props_name[i]] = j
return fout
flt = core.std.ModifyFrame(clip, clip, FLT)
return flt
def L0Smooth(clip, lamda=2e-2, kappa=2, color=True, **depth_args):
"""L0 Smooth in VapourSynth
It is also known as "L0 Gradient Minimization".
L0 smooth is a new image editing method, particularly effective for sharpening major edges
by increasing the steepness of transitions while eliminating a manageable degree of low-amplitude structures.
It is achieved in an unconventional optimization framework making use of L0 gradient minimization,
which can globally control how many non-zero gradients are resulted to approximate prominent structures in a structure-sparsity-management manner.
Unlike other edge-preserving smoothing approaches, this method does not depend on local features and globally locates important edges.
It, as a fundamental tool, finds many applications and is particularly beneficial to edge extraction, clip-art JPEG artifact removal, and non-photorealistic image generation.
All the internal calculations are done at 32-bit float.
Args:
clip: Input clip with no chroma subsampling.
lamda: (float) Smoothing parameter controlling the degree of smooth.
A large "lamda" makes the result have very few edges.
Typically it is within the range [0.001, 0.1].
This parameter is renamed from "lambda" for better compatibility with Python.
Default is 0.02.
kappa: (float) Parameter that controls the convergence rate of alternating minimization algorithm.
Small "kappa" results in more iteratioins and with sharper edges.
kappa = 2 is suggested for natural images, which is a good balance between efficiency and performance.
Default is 2.
color: (bool) Whether to process data collaboratively.
If true, the gradient magnitude in the model is defined as the sum of gradient magnitudes in the original color space.
If false, channels in "clip" will be processed separately.
Default is True.
depth_args: (dict) Additional arguments passed to mvf.Depth() in the form of keyword arguments.
Default is {}.
Ref:
[1] Xu, L., Lu, C., Xu, Y., & Jia, J. (2011, December). Image smoothing via L0 gradient minimization. In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p. 174). ACM.
[2] http://www.cse.cuhk.edu.hk/~leojia/projects/L0smoothing/index.html
TODO: Optimize FFT using pyfftw library.
"""
funcName = 'L0Smooth'
if not isinstance(clip, vs.VideoNode) or any((clip.format.subsampling_w, clip.format.subsampling_h)):
raise TypeError(funcName + ': \"clip\" must be a clip with no chroma subsampling!')
# Internal parameters
bits = clip.format.bits_per_sample
sampleType = clip.format.sample_type
input_per_plane = output_per_plane = not color or clip.format.num_planes == 1
# Convert to floating point
clip = mvf.Depth(clip, depth=32, sample=vs.FLOAT, **depth_args)
# Add padding for real Fast Fourier Transform
if clip.width & 1:
pad = True
clip = core.std.AddBorders(clip, left=1)
else:
pad = False
# Pre-calculate constant 2-D matrix
size2D = (clip.height, clip.width)
Denormin2 = _L0Smooth_generate_denormin2(size2D)
# Process
clip = numpy_process(clip, functools.partial(L0Smooth_core, lamda=lamda, kappa=kappa, Denormin2=Denormin2),
input_per_plane=input_per_plane, output_per_plane=output_per_plane, copy=True)
# Crop the padding
if pad:
clip = core.std.CropRel(clip, left=1)
# Convert the bit depth and sample type of output to the same as input
clip = mvf.Depth(clip, depth=bits, sample=sampleType, **depth_args)
return clip
def _L0Smooth_generate_denormin2(size2D):
"""Helper function to generate constant "Denormin2"
"""
fx = np.array([[1, -1]])
fy = np.array([[1], [-1]])
otfFx = psf2otf(fx, outSize=size2D)
otfFy = psf2otf(fy, outSize=size2D)
Denormin2 = np.abs(otfFx) ** 2 + np.abs(otfFy) ** 2
Denormin2 = Denormin2[:, :size2D[1]//2+1]
return Denormin2
def L0Smooth_core(src, lamda=2e-2, kappa=2, Denormin2=None, copy=False):
"""L0 Smooth in NumPy.
It is also known as "L0 Gradient Minimization".
Args:
src: 2-D or 3-D numpy array in the form of "HWC". The length along the second dimension must be even.
3-D data will be processed collaboratively, which is the same as the official MATLAB version.
lamda: (float) Smoothing parameter controlling the degree of smooth.
Default is 2e-2.
kappa: (float) Parameter that controls the rate of convergence.
Default is 2.
Denormin2: (ndarray) Constant matrix. If it is None, it will be calculated automatically.
If "src" is a 2-D array, "Denormin2" must also be 2-D array.
Else, if "src" is a 2-D array, "Denormin2" can be either 2-D or 3-D array.
copy: (bool) Whether to copy the data before processing. Default is False.
For detailed documentation, please refer to the documentation of "L0Smooth" funcion in current library.
TODO: Optimize FFT using pyfftw library.
"""
funcName = 'L0Smooth_core'
if not isinstance(src, np.ndarray) or src.ndim not in (2, 3):
raise TypeError(funcName + ': \"src\" must be 2-D or 3-D numpy data!')
if src.shape[1] & 1:
raise TypeError(funcName + ': the length of \"src\" along the second dimension must be even!')
if copy:
src = src.copy()
# Get size
imgSize = src.shape
size2D = imgSize[:2]
r_size2D = (size2D[0], size2D[1] // 2 + 1)
D = imgSize[2] if src.ndim == 3 else 1
# Generate constant "Denormin2"
if Denormin2 is None:
Denormin2 = _L0Smooth_generate_denormin2(size2D)
if Denormin2.shape[:2] == size2D:
Denormin2 = Denormin2[:, :size2D[1]//2+1]
if src.ndim == 3 and Denormin2.shape == r_size2D:
Denormin2 = Denormin2[:, :, np.newaxis]
if (src.ndim == 2 and Denormin2.shape != r_size2D) or (src.ndim == 3 and Denormin2.shape not in ((*r_size2D, 1), (*r_size2D, D))):
raise ValueError(funcName + ': the shape of \"Denormin2\" must be {}!'.format((*r_size2D, 1)))
# Internal parameters
beta = 2 * lamda
betamax = 1e5
# Pre-allocate memory
Denormin = np.empty_like(Denormin2)
h = np.empty_like(src)
v = np.empty_like(src)
t = np.empty(size2D, dtype='bool')
FS = np.empty(r_size2D if src.ndim == 2 else (*r_size2D, D), dtype='complex')
Normin2 = np.empty_like(src)
# Start processing
Normin1 = np.fft.rfft2(src, axes=(0, 1))
while beta < betamax:
Denormin = 1 + beta * Denormin2
# h-v subproblem
#h = np.hstack((np.diff(src, 1, 1), src[:, 0:1] - src[:, -1:]))
#v = np.vstack((np.diff(src, 1, 0), src[0:1, :] - src[-1:, :]))
h[:, :-1] = src[:, 1:] - src[:, :-1]
h[:, -1:] = src[:, :1] - src[:, -1:]
v[:-1, :] = src[1:, :] - src[:-1, :]
v[-1:, :] = src[:1, :] - src[-1:, :]
if src.ndim == 3:
t[:] = np.sum(h ** 2 + v ** 2, 2) < lamda / beta
else: # src.ndim == 2
t[:] = (h ** 2 + v ** 2) < lamda / beta
h[t] = 0
v[t] = 0
# S subproblem
#Normin2 = np.hstack((h[:, -1:] - h[:, 0:1], -np.diff(h, 1, 1))) + np.vstack((v[-1:, :] - v[0:1, :], -np.diff(v, 1, 0)))
Normin2[:, :1] = h[:, -1:] - h[:, :1]
Normin2[:, 1:] = h[:, :-1] - h[:, 1:]
Normin2[:1, :] += v[-1:, :] - v[:1, :]
Normin2[1:, :] += v[:-1, :] - v[1:, :]
FS[:] = (Normin1 + beta * np.fft.rfft2(Normin2, axes=(0, 1))) / Denormin
src[:] = np.fft.irfft2(FS, axes=(0, 1))
# Updata parameter
beta *= kappa
return src
def psf2otf(psf, outSize=None, fast=False):
"""Function of convert point-spread function to optical transfer function
Ported from MATLAB
Args:
psf: Point-spread function in numpy.ndarray.
outSize: (tuple) The size of the OTF array. Default is the same as psf.
fast: (tuple) Whether to check the resulting values and discard the imaginary part if it's within roundoff error.
Default is False.
"""
funcName = 'psf2otf'
psfSize = np.array(np.shape(psf))
if outSize is None:
outSize = psfSize
elif not isinstance(outSize, np.ndarray):
outSize = np.array(outSize)
# Pad the PSF to outSize
padSize = outSize - psfSize
psf = np.lib.pad(psf, pad_width=[(0, i) for i in padSize], mode='constant', constant_values=0)
# Circularly shift otf so that the "center" of the PSF is at the (0, 0) element of the array.
psf = np.roll(psf, shift=tuple(-np.floor_divide(psfSize, 2)), axis=tuple(range(psf.ndim)))
# Compute the OTF
otf = np.fft.fftn(psf)
if not fast:
# Estimate the rough number of operations involved in the computation of the FFT.
nElem = np.prod(psfSize)
nOps = 0
for k in range(np.ndim(psf)):
nffts = nElem / psfSize[k]
nOps += psfSize[k] * math.log2(psfSize[k]) * nffts
# Discard the imaginary part of the psf if it's within roundoff error.
eps = 2.220446049250313e-16
if np.max(np.abs(np.imag(otf))) / np.max(np.abs(otf)) <= nOps * eps:
otf = np.real(otf)
return otf
def L0GradientProjection(clip, alpha=0.08, precision=255, epsilon=0.0002, maxiter=5000, gamma=3, eta=0.95, color=True, **depth_args):
"""L0 Gradient Projection in VapourSynth
L0 gradient projection is a new edge-preserving filtering method based on the L0 gradient.
In contrast to the L0 gradient minimization, L0 gradient projection framework is intuitive
because one can directly impose a desired L0 gradient value on the output image.
The constrained optimization problem is minimizing the quadratic data-fidelity subject to the hard constraint that
the L0 gradient is less than a user-given parameter "alpha".
The solution is based on alternating direction method of multipliers (ADMM), while the hard constraint is handled by
projection onto the mixed L1,0 pseudo-norm ball with variable splitting, and the computational complexity is O(NlogN).
However, current implementation here is extremely slow. In my experiment, the number of iteration of this algorithm is far more than L0Smooth.
All the internal calculations are done at 32-bit float.
Args:
clip: Input clip with no chroma subsampling.
alpha: (float) L0 gradient of output in percentage form, i.e. the range is [0, 1].
It can be seen as the degree of flatness in the output.
Default is 0.08.
precision: (float) Precision of the calculation of L0 gradient. The larger the value, the more accurate the calculation.
Default is 255.
epsilon: (float) Stopping criterion in percentage form, i.e. the range is [0, 1].
It determines the allowable error from alpha.
Default is 0.0002.
maxiter: (int) Maximum number of iterations.
Default is 5000.
gamma: (int) Step size of ADMM.
Default is 3.
eta: (int) Controling gamma for nonconvex optimization.
It stabilizes ADMM for nonconvex optimization.
According to recent convergence analyses of ADMM for nonconvex cases, under appropriate conditions,
the sequence generated by ADMM converges to a stationary point with sufficiently small gamma.
Default is 0.95.
depth_args: (dict) Additional arguments passed to mvf.Depth() in the form of keyword arguments.
Default is {}.
Ref:
[1] Ono, S. (2017). $ L_ {0} $ Gradient Projection. IEEE Transactions on Image Processing, 26(4), 1554-1564.
[2] Ono, S. (2017, March). Edge-preserving filtering by projection onto L 0 gradient constraint. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on (pp. 1492-1496). IEEE.
[3] https://sites.google.com/site/thunsukeono/publications
TODO: Optimize FFT using pyfftw library.
"""
funcName = 'L0GradientProjection'
if not isinstance(clip, vs.VideoNode) or any((clip.format.subsampling_w, clip.format.subsampling_h)):
raise TypeError(funcName + ': \"clip\" must be a clip with no chroma subsampling!')
# Internal parameters
bits = clip.format.bits_per_sample
sampleType = clip.format.sample_type
input_per_plane = output_per_plane = not color or clip.format.num_planes == 1
# Convert to floating point
clip = mvf.Depth(clip, depth=32, sample=vs.FLOAT, **depth_args)
# Add padding for real Fast Fourier Transform
if clip.width & 1:
pad = True
clip = core.std.AddBorders(clip, left=1)
else:
pad = False
# Pre-calculate constant 2-D matrix
size2D = (clip.height, clip.width)
Lap = _L0GradProj_generate_lap(size2D)
# Process
clip = numpy_process(clip, functools.partial(L0GradProj_core, alpha=alpha, precision=precision, epsilon=epsilon, maxiter=maxiter,
gamma=gamma, eta=eta, Lap=Lap), input_per_plane=input_per_plane, output_per_plane=output_per_plane, copy=True)
# Crop the padding
if pad:
clip = core.std.CropRel(clip, left=1)
# Convert the bit depth and sample type of output to the same as input
clip = mvf.Depth(clip, depth=bits, sample=sampleType, **depth_args)
return clip
def L0GradProj_core(src, alpha=0.08, precision=255, epsilon=0.0002, maxiter=5000, gamma=3, eta=0.95, Lap=None, copy=False):
"""L0 Gradient Projection in NumPy.
Args:
src: 2-D or 3-D numpy array in the form of "HWC". The length along the second dimension must be even.
3-D data will be processed collaboratively, which is the same as the official MATLAB version.
alpha: (float) L0 gradient of output in percentage form, i.e. the range is [0, 1]. Default is 0.08.
precision: (float) Precision of the calculation of L0 gradient. Default is 255.
epsilon: (float) Stopping criterion in percentage form, i.e. the range is [0, 1]. Default is 0.0002.
maxiter: (int) Maximum number of iterations. Default is 5000.
gamma: (int) Step size of ADMM. Default is 3.
eta: (int) Controling gamma for nonconvex optimization. Default is 0.95.
Lap: (ndarray) Constant matrix. If it is None, it will be calculated automatically.
copy: (bool) Whether to copy the data before processing. Default is False.
For detailed documentation, please refer to the documentation of "L0GradientProjection" funcion in current library.
TODO: Optimize FFT using pyfftw library.
"""
funcName = 'L0GradProj_core'
if not isinstance(src, np.ndarray) or src.ndim not in (2, 3):
raise TypeError(funcName + ': \"src\" must be 2-D or 3-D numpy data!')
if src.shape[1] & 1:
raise TypeError(funcName + ': the length of \"src\" along the second dimension must be even!')
if copy:
src = src.copy()
src_ndim = src.ndim
src_shape = src.shape
N = src_shape[0] * src_shape[1]
alpha = round(alpha * N)
epsilon *= N
if src_ndim == 2:
src = src[:, :, np.newaxis, np.newaxis]
else: # img.ndim == 3
src = src[:, :, :, np.newaxis]
# difference operators (periodic boundary)
D = lambda z: np.concatenate([z[np.r_[1:z.shape[0], 0], :, :, :] - z, z[:, np.r_[1:z.shape[1], 0], :, :] - z], axis=3)
Dt = lambda z: np.vstack([-z[:1, :, :, :1] + z[-1:, :, :, :1], -z[1:, :, :, :1] + z[:-1, :, :, :1]]) + np.hstack([-z[:, :1, :, 1:2] + z[:, -1:, :, 1:2], -z[:, 1:, :, 1:2] + z[:, :-1, :, 1:2]])
# for fftbased diagonilization
if Lap is None:
Lap = _L0GradProj_generate_lap(src_shape[:2])
if Lap.shape == src_shape[:2]:
Lap = Lap[:, :src_shape[1]//2+1, np.newaxis, np.newaxis]
if Lap.shape != (src_shape[0], src_shape[1]//2+1, 1, 1):
raise ValueError(funcName + ': the shape of \"Lap\" must be {}!'.format(src_shape[:2]))
# calculating L0 gradient value
# z: 3-D array
#L0gradcalc = lambda z: L0GradValue(D((z[:, :, :, np.newaxis] * 255).astype(np.uint8).astype(np.float32)))
L0gradcalc = lambda z: _L0GradProj_L0GradValue(D(np.round(z[:, :, :, np.newaxis] * precision)))
# variables
u = np.empty_like(src)
v = D(src)
w = v.copy()
for i in range(maxiter):
rhs = src + Dt(v - w) / gamma
u[:] = np.fft.irfft2(np.fft.rfft2(rhs, axes=(0, 1)) / (Lap / gamma + 1), axes=(0, 1))
v[:] = _L0GradProj_ProjL1ball(D(u) + w, alpha)
w += D(u) - v
gamma *= eta
L0Grad = L0gradcalc(u)
if abs(L0Grad - alpha) < epsilon:
break
u = u.reshape(src_shape)
return u
def _L0GradProj_ProjL1ball(Du, epsilon):
"""Internal function for L0GradProj_core()
Projection onto mixed L1,0 pseudo-norm ball with binary mask
Args:
Du: 4-D array
epsilon: (int) Threshold of the constraint.
"""
sizeDu = Du.shape
Du1 = Du[-1, :, :, 0].copy()
Du2 = Du[:, -1, :, 1].copy()
# masking differences between opposite boundaries
Du[-1, :, :, 0] = 0
Du[:, -1, :, 1] = 0
sumDu = np.sum(Du ** 2, axis=(2, 3))
# The worst-case complexity of Sort(modified quicksort actually) in MATLAB is O(n^2)
# while it is O(n) for numpy.partition(introselect)
I = np.argpartition(-sumDu.reshape(-1), epsilon-1)[:epsilon]
threInd = np.zeros(sizeDu[:2])
threInd.reshape(-1)[I] = 1 # set ones for values to be held
threInd = np.tile(threInd[:, :, np.newaxis, np.newaxis], (1, 1, *sizeDu[2:]))
Du *= threInd
Du[-1, :, :, 0] = Du1
Du[:, -1, :, 1] = Du2
return Du
def _L0GradProj_L0GradValue(Du):
"""Internal function for L0GradProj_core()
Calculate L0 gradient
Args:
Du: 4-D array
"""
Du[-1, :, :, 0] = 0
Du[:, -1, :, 1] = 0
return np.count_nonzero(np.abs(Du).sum(axis=(2, 3)).round())
def _L0GradProj_generate_lap(size2D):
"""Helper function to generate constant "Denormin2"
"""
Lap = np.zeros(size2D)
Lap[0, 0] = 4
Lap[0, 1] = -1
Lap[1, 0] = -1
Lap[-1, 0] = -1
Lap[0, -1] = -1
Lap = np.fft.fft2(Lap, axes=(0, 1))
return Lap
def IEDD(clip, blockSize=8, K=49, iteration=3):
"""IEDD in VapourSynth
IEDD (Iterative Estimation in DCT Domain) is a method of blind estimation of white Gaussian noise variance in highly textured images.
For a spatially correlated noise it is unusable.
An input image is divided into 8x8 blocks and discrete cosine transform (DCT) is performed for each block.
A part of 64 DCT coefficients with lowest energy calculated through all blocks is selected for further analysis.
For the DCT coefficients, a robust estimate of noise variance is calculated.
Corresponding to the obtained estimate, a part of blocks having very large values of local variance
calculated only for the selected DCT coefficients are excluded from the further analysis.
These two steps (estimation of noise variance and exclusion of blocks) are iteratively repeated three times.
On the new noise-free test image database TAMPERE17,
the method provides approximately two times lower estimation root mean square error than other methods.
The result of each plane will be stored as frame property 'IEDD_AWGN_variance_{i}' in the output clip, where "i" stands for the index of plane.
Args:
clip: Input clip with no chroma subsampling.
blockSize: (int) The side length of of block. Default is 8.
K: (int) Number of DCT coefficients with lowest energy to be calculated.
Lower value of K provides better robustness to a presence of textures.
Higher value of K provides better accuracy of noise variance estimates.
Default is 49.
iteration: (int) Number of iterations. Default is 3.
Ref:
[1] Ponomarenko, M., Gapon, N., Voronin, V., & Egiazarian, K (2018). Blind estimation of white Gaussian noise variance in highly textured images. Image Processing: Algorithms and Systems (p. 5)
[2] http://ponomarenko.info/iedd.html
TODO: Optimize DCT using pyfftw library.
"""
funcName = 'IEDD'
if not isinstance(clip, vs.VideoNode) or any((clip.format.subsampling_w, clip.format.subsampling_h)):
raise TypeError(funcName + ': \"clip\" must be a clip with no chroma subsampling!')
props_name = ['IEDD_AWGN_variance_{}'.format(i) for i in range(clip.format.num_planes)]
clip = numpy_process_val(clip, functools.partial(IEDD_core, blockSize=blockSize, K=K, iteration=iteration), props_name, per_plane=True)
return clip
def IEDD_core(src, blockSize=8, K=49, iteration=3):
"""IEDD in NumPy
IEDD is a method of blind estimation of white Gaussian noise variance in highly textured images.
Args:
src: 2-D numpy array in the form of "HW".
blockSize: (int) The side length of of block. Default is 8.
K: (int) Number of DCT coefficients with lowest energy to be calculated. Default is 49.
iteration: (int) Number of iterations. Default is 3.
TODO: Optimize DCT using pyfftw library.
"""
from scipy.fftpack import dct
funcName = 'IEDD_core'
if not isinstance(src, np.ndarray) or src.ndim != 2:
raise TypeError(funcName + ': \"src\" must be 2-D numpy data!')
# copied from https://stackoverflow.com/questions/30109068/implement-matlabs-im2col-sliding-in-python/30110497#30110497
def im2col_sliding_broadcasting(A, BSZ, stepsize=1):
# Parameters
M,N = A.shape
col_extent = N - BSZ[1] + 1
row_extent = M - BSZ[0] + 1
# Get Starting block indices
start_idx = np.arange(BSZ[0])[:, np.newaxis] * N + np.arange(BSZ[1])
# Get offsetted indices across the height and width of input array
offset_idx = np.arange(row_extent)[:, np.newaxis] * N + np.arange(col_extent)
# Get all actual indices & index into input array for final output
return np.take(A,start_idx.ravel()[:, np.newaxis] + offset_idx.ravel()[::stepsize])
def mymad(d):
d = d.flatten()
m = np.median(d)
return np.median(np.abs(d - m)) * 1.4826
# function dctm
blks = im2col_sliding_broadcasting(src.T.astype('float64', copy=False), [blockSize, blockSize])
T = dct(np.eye(blockSize), axis=0, norm='ortho')
blks = np.kron(T, T).dot(blks)
ene = np.sum(blks ** 2, axis=1)
m2 = np.argsort(ene)
m1 = ene[m2]
pz = np.nonzero(m2 == blockSize * blockSize - 1)[0]
m2 = m2[:K]
if pz < K and m1[pz] < m1[0] * 1.3:
m2[pz] = m2[0]
m2[0] = blockSize * blockSize - 1
m = mymad(blks[m2[0]])
for i in range(iteration):
z = blks[m2]
y = np.mean(z ** 2, axis=0)
mp = y < (1 + np.sqrt(blockSize / K)) * m ** 2
if np.count_nonzero(mp) > (blockSize * 4) ** 2:
m = mymad(z[:1, mp])
variance_estimate = m ** 2
return variance_estimate
def DNCNN(clip, symbol_path, params_path, patch_size=[640, 640], device_id=0, **depth_args):
"""DnCNN in NumPy
DnCNN is a deep convolutional neural network for image denoising.
It can handel blind gaussian denoising or even general image denoising tasks.
It's much slower than its C++ counterpart, and the GPU memory consumption is high. (See https://github.com/kice/vs_mxDnCNN)
All the internal calculations are done at 32-bit float.
Requirment: MXNet, pre-trained models.
Args:
clip: Input YUV clip with no chroma subsampling.
symbol_path, params_path: Path to the model and params.
patch_size: ([int, int]) The horizontal block size for dividing the image during processing.
Smaller value results in lower VRAM usage or possibly border distortion, while larger value may not necessarily give faster speed.
Default is [640, 640].
device_id: (int) Which device to use. Starting with 0. If it is smaller than 0, CPU will be used.
Default is 0.
depth_args: (dict) Additional arguments passed to mvf.Depth() in the form of keyword arguments.
Default is {}.
"""
import mxnet as mx
from collections import namedtuple
if any([clip.format.subsampling_w, clip.format.subsampling_h]):
raise TypeError('Invalid type')
# Load the model
ctx = mx.gpu(device_id) if device_id >= 0 else mx.cpu()
model = mx.mod.Module(mx.symbol.load(symbol_path), context=ctx, data_names=['data'])
param = mx.nd.load(params_path)
arg_param = {}
aux_param = {}
for k, v in param.items():
if k.find("arg") != -1:
arg_param[k.split(":")[1]] = v
if k.find("aux") != -1:
aux_param[k.split(":")[1]] = v
model.bind(data_shapes=[('data', [1, 3, *patch_size])], for_training=False)
model.set_params(arg_params=arg_param, aux_params=aux_param)
# Execute
def DNCNN_core(img, model):
img = img.copy()
img[:, :, 1:] += 0.5
Batch = namedtuple('Batch', ['data'])
data = mx.nd.expand_dims(mx.nd.array(img), axis=0)
data = mx.nd.transpose(data, axes=(0, 3, 1, 2)).astype('float32')
pred = mx.nd.empty(data.shape)
for i in range(math.ceil(data.shape[2]/patch_size[0])):
for j in range(math.ceil(data.shape[3]/patch_size[1])):
model.forward(data_batch=Batch([data[:, :, i*patch_size[0]:min((i+1)*patch_size[0], img.shape[0]),
j*patch_size[1]:min((j+1)*patch_size[1], img.shape[1])].copy()]), is_train=False)
pred[:, :, i*patch_size[0]:min((i+1)*patch_size[0], img.shape[0]),
j*patch_size[1]:min((j+1)*patch_size[1], img.shape[1])] = model.get_outputs()[0]
pred = mx.nd.transpose(pred, axes=(0, 2, 3, 1)).reshape(img.shape).asnumpy()
output = img - pred
output[:, :, 1:] -= 0.5
return output
bits = clip.format.bits_per_sample
sampleType = clip.format.sample_type
clip = mvf.Depth(clip, depth=32, sample=vs.FLOAT, **depth_args)
clip = numpy_process(clip, DNCNN_core, input_per_plane=False, output_per_plane=False, model=model) # Forward
clip = mvf.Depth(clip, depth=bits, sample=sampleType, **depth_args)
return clip
def get_blockwise_view(input_2D, block_size=8, strides=1, writeable=False):
"""Get block-wise view of an 2-D array.
Args:
input_2D: 2-D array.
block_size: (int or [int, int]) The size of the block. It can be a single integer, which means the block is a square,
or a list of two integers specifying the height and width of the block respectively.
Default is 8.
strides: (int or [int, int]) The stride between the blocks. The format is similar to "patch_size".
Default is 1.
writeable: (bool) If set to False, the returned array will always be readonly.
Otherwise it will be writable if the original array was. It is advisable to set this to False if possible.
Default is False.
"""
from numpy.lib.stride_tricks import as_strided
w, h = input_2D.shape
if isinstance(block_size, int):
block_size = [block_size]
block_size_h = block_size[0]
block_size_v = block_size[-1]
if isinstance(strides, int):
strides = [strides]
strides_h = strides[0]
strides_v = strides[-1]
# assert(not any([(w-block_size_h) % strides_h, (h-block_size_v) % strides_v]))
return as_strided(input_2D, shape=[(w-block_size_h)//strides_h+1, (h-block_size_v)//strides_v+1, block_size_h, block_size_v],