Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How to run the code on a GPU? #8

Open
gnoppa1 opened this issue Feb 22, 2018 · 0 comments
Open

How to run the code on a GPU? #8

gnoppa1 opened this issue Feb 22, 2018 · 0 comments

Comments

@gnoppa1
Copy link

gnoppa1 commented Feb 22, 2018

I am trying to run the code on Amazons AWS (p2.xlarge). I've adjusted the code to theano 1.0 and run it with:
[global]
device = cpu
floatX = float32
Sadly, this pretty slow so I'd rather use the GPU which is a Nvidia Tesla K80.
However, by doing so I run into this error:
Traceback (most recent call last): File "conv_net_train.py", line 483, in <module> activations=[Sigmoid]) File "conv_net_train.py", line 223, in train_conv_net cost_epoch = train_model(minibatch_index) File "/home/ubuntu/anaconda3/envs/theano_p27/lib/python2.7/site-packages/theano/compile/function_module.py", line 917, in __call__ storage_map=getattr(self.fn, 'storage_map', None)) File "/home/ubuntu/anaconda3/envs/theano_p27/lib/python2.7/site-packages/theano/gof/link.py", line 325, in raise_with_op reraise(exc_type, exc_value, exc_trace) File "/home/ubuntu/anaconda3/envs/theano_p27/lib/python2.7/site-packages/theano/compile/function_module.py", line 903, in __call__ self.fn() if output_subset is None else\ File "pygpu/gpuarray.pyx", line 682, in pygpu.gpuarray.pygpu_zeros File "pygpu/gpuarray.pyx", line 693, in pygpu.gpuarray.pygpu_empty File "pygpu/gpuarray.pyx", line 301, in pygpu.gpuarray.array_empty pygpu.gpuarray.GpuArrayException: cuMemAlloc: CUDA_ERROR_OUT_OF_MEMORY: out of memory Apply node that caused the error: GpuAlloc<None>{memset_0=True}(GpuArrayConstant{[[[[0.]]]]}, Elemwise{Composite{(Switch(LT(i0, i1), Switch(LT((i0 + i2), i3), i4, (i0 + i2)), Switch(LT(i0, i2), i0, i2)) - i5)}}.0, Shape_i{1}.0, Shape_i{2}.0, Shape_i{1}.0) Toposort index: 101 Inputs types: [GpuArrayType<None>(float64, (True, True, True, True)), TensorType(int64, scalar), TensorType(int64, scalar), TensorType(int64, scalar), TensorType(int64, scalar)] Inputs shapes: [(1, 1, 1, 1), (), (), (), ()] Inputs strides: [(8, 8, 8, 8), (), (), (), ()] Inputs values: [gpuarray.array([[[[0.]]]]), array(50), array(312), array(153), array(300)] Outputs clients: [[forall_inplace,gpu,grad_of_scan_fn}(Elemwise{maximum,no_inplace}.0, InplaceGpuDimShuffle{0,x,1}.0, InplaceGpuDimShuffle{0,x,1}.0, GpuAlloc<None>{memset_0=True}.0, GpuSubtensor{int64:int64:int64}.0, GpuAlloc<None>{memset_0=True}.0, GpuAlloc<None>{memset_0=True}.0, GpuAlloc<None>{memset_0=True}.0, GpuAlloc<None>{memset_0=True}.0, GpuAlloc<None>{memset_0=True}.0, GpuAlloc<None>{memset_0=True}.0, W_conv, W_conv, W_conv, GpuFromHost<None>.0, InplaceGpuDimShuffle{x,0,x,x}.0, InplaceGpuDimShuffle{x,0,x,x}.0, InplaceGpuDimShuffle{x,0,x,x}.0, GpuFromHost<None>.0, GpuFromHost<None>.0)]]

Any idea how to resolve this (actually, memory should be enough)?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant