forked from xmengli/H-DenseUNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing.py
85 lines (68 loc) · 2.89 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from medpy.io import load, save
import os
import os.path
import numpy as np
def proprecessing(image_path, save_folder):
if not os.path.exists("data/"+save_folder):
os.mkdir("data/"+save_folder)
filelist = os.listdir(image_path)
filelist = [item for item in filelist if 'volume' in item]
for file in filelist:
img, img_header = load(image_path+file)
img[img < -200] = -200
img[img > 250] = 250
img = np.array(img, dtype='float32')
print ("Saving image "+file)
save(img, "./data/" + save_folder + file)
def generate_livertxt(image_path, save_folder):
if not os.path.exists("data/"+save_folder):
os.mkdir("data/"+save_folder)
# Generate Livertxt
if not os.path.exists("data/"+save_folder+'LiverPixels'):
os.mkdir("data/"+save_folder+'LiverPixels')
for i in range(0,131):
livertumor, header = load(image_path+'segmentation-'+str(i)+'.nii')
f = open('data/' +save_folder+'/LiverPixels/liver_' + str(i) + '.txt', 'w')
index = np.where(livertumor==1)
x = index[0]
y = index[1]
z = index[2]
np.savetxt(f, np.c_[x,y,z], fmt="%d")
f.write("\n")
f.close()
def generate_tumortxt(image_path, save_folder):
if not os.path.exists("data/"+save_folder):
os.mkdir("data/"+save_folder)
# Generate Livertxt
if not os.path.exists("data/"+save_folder+'TumorPixels'):
os.mkdir("data/"+save_folder+'TumorPixels')
for i in range(0,131):
livertumor, header = load(image_path+'segmentation-'+str(i)+'.nii')
f = open("data/"+save_folder+"/TumorPixels/tumor_"+str(i)+'.txt','w')
index = np.where(livertumor==2)
x = index[0]
y = index[1]
z = index[2]
np.savetxt(f,np.c_[x,y,z],fmt="%d")
f.write("\n")
f.close()
def generate_txt(image_path, save_folder):
if not os.path.exists("data/"+save_folder):
os.mkdir("data/"+save_folder)
# Generate Livertxt
if not os.path.exists("data/"+save_folder+'LiverBox'):
os.mkdir("data/"+save_folder+'LiverBox')
for i in range(0,131):
values = np.loadtxt('data/myTrainingDataTxt/LiverPixels/liver_' + str(i) + '.txt', delimiter=' ', usecols=[0, 1, 2])
a = np.min(values, axis=0)
b = np.max(values, axis=0)
box = np.append(a,b, axis=0)
np.savetxt('data/myTrainingDataTxt/LiverBox/box_'+str(i)+'.txt', box,fmt='%d')
proprecessing(image_path='data/TrainingData/', save_folder='myTrainingData/')
proprecessing(image_path='data/TestData/', save_folder='myTestData/')
print ("Generate liver txt ")
generate_livertxt(image_path='data/TrainingData/', save_folder='myTrainingDataTxt/')
print ("Generate tumor txt")
generate_tumortxt(image_path='data/TrainingData/', save_folder='myTrainingDataTxt/')
print ("Generate liver box ")
generate_txt(image_path='data/TrainingData/', save_folder='myTrainingDataTxt/')