Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Some problems when i train VOC2007 database #193

Open
EvanYyf opened this issue Apr 11, 2018 · 1 comment
Open

Some problems when i train VOC2007 database #193

EvanYyf opened this issue Apr 11, 2018 · 1 comment

Comments

@EvanYyf
Copy link

EvanYyf commented Apr 11, 2018

opts:
cache_name: 'fast_rcnn_VOC2007_ZF'
conf: [1×1 struct]
ignore_cache: 0
imdb: [1×1 struct]
net_def_file: 'F:\yyf\faster_rcnn-master\faster_rcnn-master\models\fast_rcnn_prototxts\ZF\test.prototxt'
net_file: 'F:\yyf\faster_rcnn-master\faster_rcnn-master\output\fast_rcnn_cachedir\fast_rcnn_VOC2007_ZF\voc_2007_trainval\final'
roidb: [1×1 struct]
suffix: ''

conf:
batch_size: 128
bbox_thresh: 0.5000
bg_thresh_hi: 0.5000
bg_thresh_lo: 0.1000
fg_fraction: 0.2500
fg_thresh: 0.5000
image_means: [224×224×3 single]
ims_per_batch: 2
max_size: 1000
rng_seed: 6
scales: 600
test_binary: 0
test_max_size: 1000
test_nms: 0.3000
test_scales: 600
use_flipped: 1
use_gpu: 1

faster_rcnn-master: test (voc_2007_test) 1/4952 time: 0.400s
.....The middle part is omitted.......
faster_rcnn-master: test (voc_2007_test) 1000/4952 time: 0.039s
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf

faster_rcnn-master: test (voc_2007_test) 1001/4952 time: 0.037s
.....The middle part is omitted.......
faster_rcnn-master: test (voc_2007_test) 3000/4952 time: 0.036s
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf

faster_rcnn-master: test (voc_2007_test) 3001/4952 time: 0.031s
.....The middle part is omitted.......
faster_rcnn-master: test (voc_2007_test) 4000/4952 time: 0.034s
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf

faster_rcnn-master: test (voc_2007_test) 4001/4952 time: 0.036s
.....The middle part is omitted.......
faster_rcnn-master: test (voc_2007_test) 4952/4952 time: 0.037s
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf
-Inf

test all images in 182.725756 seconds.
Cleared 0 solvers and 1 stand-alone nets
aeroplane: pr: load: 639/4952
aeroplane: pr: load: 1275/4952
aeroplane: pr: load: 1870/4952
aeroplane: pr: load: 2495/4952
aeroplane: pr: load: 3092/4952
aeroplane: pr: load: 3691/4952
aeroplane: pr: load: 4279/4952
aeroplane: pr: load: 4892/4952
!!! aeroplane : 0.0000 0.0000
bicycle: pr: load: 638/4952
bicycle: pr: load: 1253/4952
bicycle: pr: load: 1850/4952
bicycle: pr: load: 2470/4952
bicycle: pr: load: 3074/4952
bicycle: pr: load: 3673/4952
bicycle: pr: load: 4262/4952
bicycle: pr: load: 4871/4952
!!! bicycle : 0.0000 0.0000
bird: pr: load: 640/4952
bird: pr: load: 1279/4952
bird: pr: load: 1877/4952
bird: pr: load: 2476/4952
bird: pr: load: 2991/4952
bird: pr: load: 3570/4952
bird: pr: load: 4168/4952
bird: pr: load: 4774/4952
!!! bird : 0.0000 0.0000
boat: pr: load: 639/4952
boat: pr: load: 1270/4952
boat: pr: load: 1868/4952
boat: pr: load: 2487/4952
boat: pr: load: 3081/4952
boat: pr: load: 3654/4952
boat: pr: load: 4237/4952
boat: pr: load: 4839/4952
!!! boat : 0.0000 0.0000
bottle: pr: load: 640/4952
bottle: pr: load: 1278/4952
bottle: pr: load: 1874/4952
bottle: pr: load: 2499/4952
bottle: pr: load: 3092/4952
bottle: pr: load: 3691/4952
bottle: pr: load: 4278/4952
bottle: pr: load: 4862/4952
!!! bottle : 0.0000 0.0000
bus: pr: load: 640/4952
bus: pr: load: 1276/4952
bus: pr: load: 1872/4952
bus: pr: load: 2493/4952
bus: pr: load: 3089/4952
bus: pr: load: 3679/4952
bus: pr: load: 4270/4952
bus: pr: load: 4874/4952
!!! bus : 0.0000 0.0000
car: pr: load: 640/4952
car: pr: load: 1277/4952
car: pr: load: 1872/4952
car: pr: load: 2493/4952
car: pr: load: 3091/4952
car: pr: load: 3677/4952
car: pr: load: 4269/4952
car: pr: load: 4874/4952
!!! car : 0.0000 0.0000
cat: pr: load: 640/4952
cat: pr: load: 1279/4952
cat: pr: load: 1876/4952
cat: pr: load: 2497/4952
cat: pr: load: 3092/4952
cat: pr: load: 3688/4952
cat: pr: load: 4274/4952
cat: pr: load: 4877/4952
!!! cat : 0.0000 0.0000
chair: pr: load: 640/4952
chair: pr: load: 1276/4952
chair: pr: load: 1874/4952
chair: pr: load: 2481/4952
chair: pr: load: 3077/4952
chair: pr: load: 3664/4952
chair: pr: load: 4249/4952
chair: pr: load: 4855/4952
!!! chair : 0.0000 0.0000
cow: pr: load: 640/4952
cow: pr: load: 1279/4952
cow: pr: load: 1873/4952
cow: pr: load: 2496/4952
cow: pr: load: 3091/4952
cow: pr: load: 3682/4952
cow: pr: load: 4271/4952
cow: pr: load: 4874/4952
!!! cow : 0.0000 0.0000
diningtable: pr: load: 637/4952
diningtable: pr: load: 1267/4952
diningtable: pr: load: 1865/4952
diningtable: pr: load: 2484/4952
diningtable: pr: load: 3081/4952
diningtable: pr: load: 3674/4952
diningtable: pr: load: 4263/4952
diningtable: pr: load: 4871/4952
!!! diningtable : 0.0000 0.0000
dog: pr: load: 638/4952
dog: pr: load: 1270/4952
dog: pr: load: 1868/4952
dog: pr: load: 2487/4952
dog: pr: load: 3085/4952
dog: pr: load: 3679/4952
dog: pr: load: 4270/4952
dog: pr: load: 4874/4952
!!! dog : 0.0000 0.0000
horse: pr: load: 640/4952
horse: pr: load: 1279/4952
horse: pr: load: 1878/4952
horse: pr: load: 2504/4952
horse: pr: load: 3096/4952
horse: pr: load: 3692/4952
horse: pr: load: 4279/4952
horse: pr: load: 4879/4952
!!! horse : 0.0000 0.0000
motorbike: pr: load: 640/4952
motorbike: pr: load: 1281/4952
motorbike: pr: load: 1880/4952
motorbike: pr: load: 2505/4952
motorbike: pr: load: 3098/4952
motorbike: pr: load: 3693/4952
motorbike: pr: load: 4279/4952
motorbike: pr: load: 4889/4952
!!! motorbike : 0.0000 0.0000
person: pr: load: 640/4952
person: pr: load: 1279/4952
person: pr: load: 1879/4952
person: pr: load: 2505/4952
person: pr: load: 3099/4952
person: pr: load: 3695/4952
person: pr: load: 4283/4952
person: pr: load: 4896/4952
!!! person : 0.0000 0.0000
pottedplant: pr: load: 640/4952
pottedplant: pr: load: 1281/4952
pottedplant: pr: load: 1883/4952
pottedplant: pr: load: 2506/4952
pottedplant: pr: load: 3103/4952
pottedplant: pr: load: 3699/4952
pottedplant: pr: load: 4284/4952
pottedplant: pr: load: 4898/4952
!!! pottedplant : 0.0000 0.0000
sheep: pr: load: 639/4952
sheep: pr: load: 1267/4952
sheep: pr: load: 1864/4952
sheep: pr: load: 2484/4952
sheep: pr: load: 3081/4952
sheep: pr: load: 3675/4952
sheep: pr: load: 4265/4952
sheep: pr: load: 4865/4952
!!! sheep : 0.0000 0.0000
sofa: pr: load: 640/4952
sofa: pr: load: 1280/4952
sofa: pr: load: 1878/4952
sofa: pr: load: 2505/4952
sofa: pr: load: 3092/4952
sofa: pr: load: 3691/4952
sofa: pr: load: 4268/4952
sofa: pr: load: 4870/4952
!!! sofa : 0.0000 0.0000
train: pr: load: 639/4952
train: pr: load: 1271/4952
train: pr: load: 1865/4952
train: pr: load: 2484/4952
train: pr: load: 3082/4952
train: pr: load: 3676/4952
train: pr: load: 4269/4952
train: pr: load: 4874/4952
!!! train : 0.0000 0.0000
tvmonitor: pr: load: 640/4952
tvmonitor: pr: load: 1281/4952
tvmonitor: pr: load: 1883/4952
tvmonitor: pr: load: 2506/4952
tvmonitor: pr: load: 3102/4952
tvmonitor: pr: load: 3699/4952
tvmonitor: pr: load: 4286/4952
tvmonitor: pr: load: 4899/4952
!!! tvmonitor : 0.0000 0.0000

Results:
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0

     0

It seems that nothing had been computed ,how can i solve that?

@EvanYyf
Copy link
Author

EvanYyf commented Apr 11, 2018

When the program goes to here,it starts to wrong.

Preparing training data...Done.
Preparing validation data...Done.

------------------------- Iteration 2000 -------------------------
Training : error 0.698, loss (cls 2.66, reg NaN)
Testing : error 0.692, loss (cls 2.59, reg NaN)

------------------------- Iteration 4000 -------------------------
Training : error 0.704, loss (cls 2.6, reg NaN)
Testing : error 0.692, loss (cls 2.59, reg NaN)

------------------------- Iteration 6000 -------------------------
Training : error 0.686, loss (cls 2.57, reg NaN)
Testing : error 0.692, loss (cls 2.58, reg NaN)

------------------------- Iteration 8000 -------------------------
Training : error 0.701, loss (cls 2.58, reg NaN)
Testing : error 0.692, loss (cls 2.58, reg NaN)

------------------------- Iteration 10000 -------------------------
Training : error 0.688, loss (cls 2.58, reg NaN)
Testing : error 0.692, loss (cls 2.59, reg NaN)
Saved as F:\yyf\faster_rcnn-master\faster_rcnn-master\output\fast_rcnn_cachedir\fast_rcnn_VOC2007_ZF\voc_2007_trainval\iter_10000

------------------------- Iteration 12000 -------------------------
Training : error 0.702, loss (cls 2.6, reg NaN)
Testing : error 0.692, loss (cls 2.58, reg NaN)

------------------------- Iteration 14000 -------------------------
Training : error 0.692, loss (cls 2.58, reg NaN)
Testing : error 0.692, loss (cls 2.59, reg NaN)

------------------------- Iteration 16000 -------------------------
Training : error 0.686, loss (cls 2.56, reg NaN)
Testing : error 0.692, loss (cls 2.58, reg NaN)

------------------------- Iteration 18000 -------------------------
Training : error 0.696, loss (cls 2.58, reg NaN)
Testing : error 0.692, loss (cls 2.58, reg NaN)

------------------------- Iteration 20000 -------------------------
Training : error 0.692, loss (cls 2.58, reg NaN)
Testing : error 0.692, loss (cls 2.58, reg NaN)
Saved as F:\yyf\faster_rcnn-master\faster_rcnn-master\output\fast_rcnn_cachedir\fast_rcnn_VOC2007_ZF\voc_2007_trainval\iter_20000

------------------------- Iteration 22000 -------------------------
Training : error 0.69, loss (cls 2.57, reg NaN)
Testing : error 0.692, loss (cls 2.58, reg NaN)

------------------------- Iteration 24000 -------------------------
Training : error 0.696, loss (cls 2.58, reg NaN)
Testing : error 0.692, loss (cls 2.58, reg NaN)

------------------------- Iteration 26000 -------------------------
Training : error 0.696, loss (cls 2.58, reg NaN)
Testing : error 0.692, loss (cls 2.59, reg NaN)

------------------------- Iteration 28000 -------------------------
Training : error 0.702, loss (cls 2.6, reg NaN)
Testing : error 0.692, loss (cls 2.58, reg NaN)

------------------------- Iteration 30000 -------------------------
Training : error 0.689, loss (cls 2.56, reg NaN)
Testing : error 0.682, loss (cls 2.55, reg NaN)
Saved as F:\yyf\faster_rcnn-master\faster_rcnn-master\output\fast_rcnn_cachedir\fast_rcnn_VOC2007_ZF\voc_2007_trainval\iter_30000

------------------------- Iteration 32000 -------------------------
Training : error 0.677, loss (cls 2.52, reg NaN)
Testing : error 0.679, loss (cls 2.5, reg NaN)

------------------------- Iteration 34000 -------------------------
Training : error 0.587, loss (cls 2.07, reg NaN)
Testing : error 0.389, loss (cls 1.24, reg NaN)

------------------------- Iteration 36000 -------------------------
Training : error 0.325, loss (cls 1.05, reg NaN)
Testing : error 0.266, loss (cls 0.867, reg NaN)

------------------------- Iteration 38000 -------------------------
Training : error 0.234, loss (cls 0.743, reg NaN)
Testing : error 0.228, loss (cls 0.748, reg NaN)
Saved as F:\yyf\faster_rcnn-master\faster_rcnn-master\output\fast_rcnn_cachedir\fast_rcnn_VOC2007_ZF\voc_2007_trainval\iter_40000
Saved as F:\yyf\faster_rcnn-master\faster_rcnn-master\output\fast_rcnn_cachedir\fast_rcnn_VOC2007_ZF\voc_2007_trainval\final

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant