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ABSTRACT
Existing screen reader software can convey graphical content to
blind and low vision web users through text information, but does
not offer richer multimedia representations. Standalone research
projects have attempted to fill this gap, but have not achieved
lasting, widespread deployment, thus motivating the creation of a
common platform for implementing and deploying multimodal ex-
periences. We are creating the IMAGE system to be an open-source
“playground” for prototyping, exploring, and deploying novel solu-
tions to accomplish this. IMAGE does not replace a screen reader
or alt-tags, but rather works with them to provide a more com-
plete understanding of web graphics. In this communication, we
describe how the IMAGE browser extension and server components
form a modular, extensible system that can accelerate the develop-
ment of new haptic and audio renderings. We explain how various
parties, whether as developers or designers, can benefit from this
architecture, building on our pipeline for their own purposes.

CCS CONCEPTS
• Human-centered computing→ Accessibility systems and
tools; Interactive systems and tools; • Software and its engineer-
ing → Software libraries and repositories.

KEYWORDS
web graphics, open source, software framework, multimodality

ACM Reference Format:
Juliette Regimbal, Jeffrey R. Blum, and Jeremy R. Cooperstock. 2022. IMAGE:
A Deployment Framework for Creating Multimodal Experiences of Web
Graphics. In 19th Web for All Conference (W4A’22), April 25–26, 2022, Lyon,
France. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3493612.
3520460

1 INTRODUCTION
Reliance of blind and low-vision users on alternative text (alt-text)
image descriptions is problematic. Although the HTML Standard
states “the intent [of alternative text] is that replacing every image
with the text of its alt attribute does not change the meaning of
the page” [1], in practice, this may be challenging. For example,
text descriptions for information-dense images such as a chart of
COVID-19 case data, are unlikely to support the same engagement
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with, or access to, the information a sighted user would have. More-
over, alternative text is not provided for all images, and even when
it is, the associated information is often not useful. For example,
Gleason et al. found that of the few images posted by users on
Twitter that contained an image description, 39.9% were rated as
either “irrelevant” or “somewhat relevant” to the image itself [5].

The Internet Multimodal Access to Graphical Exploration (IM-
AGE) project aims to improve the accessibility of such images and
graphics by processing them to produce rich audio and haptic out-
puts on demand, in addition to spoken text description, that can
be navigated by most screen readers. IMAGE supports a variety of
possible inputs—e.g., maps, photographs, line charts—and possible
outputs—e.g., spatialized non-speech audio, speech audio, force-
feedback haptics.

To support the rapid development of the components necessary
to transform a graphical input to semantically relevant audio and
haptic outputs, we are implementing an open-source software ar-
chitecture. Our objective is for this architecture to allow for quick
prototyping and redesign of the entire multimedia pipeline, features
often missing in similar projects. Previous systems for generating
accessible outputs from visual inputs, such as VizWiz [3], connect
software modules in an ad hoc method that limits modification
and reuse, especially by those uninvolved with the initial project.
In contrast, the generic architecture and associated components
implemented as part of IMAGE permit flexible development and
can be used in other projects that aim to transform arbitrary input
media to a set of output media.

Given the pre-release status of the architecture and flexibility
of its components, we do not discuss end-user evaluation of the
actual renderings produced by the system. Instead, the primary
contribution of this communication is a first look at IMAGE as
a platform, specifically an open source, modular framework that
enables researchers and developers to more easily implement, test,
and deploy new methods for generating multimodal audio and hap-
tic experiences, especially for those who are blind or low vision.
We discuss the key design decisions that led to the IMAGE archi-
tecture, and provide an overview of the architecture with examples
of how one would implement their own functionality within it.
Further technical details are available in the IMAGE open source
code repositories, linked in this article.

2 BACKGROUND
Various projects similar to IMAGE follow a three-step pipeline
consisting of collecting data, whether from sensors or a media file,
processing the data to extract usable information, and using the
information to synthesize a new output in another modality or
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modalities. In Table 1, five projects are examined in the context of
this pipeline.

Twitter A11y generates alternative text for inaccessible images
on Twitter, applying different methods depending on the type of
image encountered: URL previews, text, or neither [7]. Users of
VizWiz use their smartphone’s camera to capture an image of
an object of interest. They are then able to ask questions about
the object and receive crowdsourced answers through the applica-
tion itself [3]. Winters et al.’s proposed pipeline would create rich
sonifications using a variety of data available on a social media
site [10]. The JAWS screen reader includes the Picture Smart ser-
vice to generate a description for an image submitted by a user [9].
The VoiceOver Recognition feature produces descriptions from im-
ages on an iPhone and allows navigation of the elements within
them [6].

All the aforementioned projects are either defunct (VizWiz and
Twitter A11y), proposals (Winters et al.’s pipeline), or proprietary
software (Picture Smart and VoiceOver). The present dearth of
available resources therefore poses a challenge for researchers and
developers aiming to create or build upon existing pipelines in this
space. Accordingly, implementation of a new framework is needed,
for which reusable components are highly desirable. The utility of
well-documented, reusable components that can be used to create
new systems has long been understood in software engineering [4].
Additionally, as modules become more self-contained and require
less specialist knowledge to integrate into a system, designers are
able to prototype with more creativity and perceived efficiency as
evidenced through the “maker movement” [8]. A set of modules
suitable for the task of converting graphical content into non-visual
multimodal outputs and a framework to easily arrange them would
be a useful tool to these researchers and developers.

3 ARCHITECTURE

Figure 1: A high-level diagram of the software architecture
showing how it models the three-step pipeline. The prepro-
cessors run serially while the handlers run in parallel.

The IMAGE architecture uses a server-client model and explicitly
supports the three-step pipeline described in Section 2. The data
collection step is accomplished on the client side, in the current
implementation of IMAGE, via a Google Chrome browser extension.
At this point, the data collected is typically an image file encoun-
tered while browsing, but may also be a geographic coordinate
representing a point of interest displayed on an embedded Google
map. Additional information, such as the context of the web page
the image data was taken from, user preferences, and client capa-
bilities are also sent from a client to the server. These elements are
discussed further in Section 3.1.

The processing step is represented by a set of microservices on
the server called preprocessors. These receive HTTP POST requests
containing the information from the client and perform a specific
task—e.g., applying a machine learning model, calling a third-party
API—to obtain more useful information about the web graphic in
question. The outputs of these preprocessors can also be combined,
allowing a preprocessor to take advantage of the output of any
earlier stage.

The synthesis step is performed by another set of microservices
called handlers, which receive the entire set of information from the
preprocessors and all information collected by the client. Each han-
dler then determines if it is capable of producing a usable output—a
rendering in IMAGE terminology—and creates it using built-in tech-
nologies and services that perform functions (e.g., text-to-speech)
that are generic to multiple handlers. Multiple renderings for a sin-
gle graphic may be produced by the handlers, providing different
perspectives.

Communications between the components carrying out these
three steps are executed by an orchestrator microservice. This com-
municates with the client, schedules and performs all communica-
tion with preprocessors and handlers, and assembles the final collec-
tion of renderings synthesized for the chosen graphic. The content
of all communications must validate against the JSON schema(s)
describing that message. All IMAGE microservices are open source
Docker images available from https://github.com/Shared-Reality-
Lab/IMAGE-server. The browser extension is available from https:
//github.com/Shared-Reality-Lab/IMAGE-browser.

3.1 Client Requests, Capabilities, and Renderers
The requests sent from the client include base generic information
regardless of the type of graphic being queried. All requests include
a Universally Unique Identifier (UUID), an ISO 639-1 representation
of the desired output language, the time the request was made in
Unix time, serialized XML representing the node containing the
graphic, and sets of capabilities and renderers. From there, addi-
tional fields are added based on the media type; an image request
also contains the file in a base64 encoding and the dimensions of
the file as displayed on the page in pixels.

The sets of capabilities and renderers, each containing reverse
domain name identifiers, indicate respectively the desired media
to be returned, and the ability of the client to display encodings of
renderings.

The capabilities indicate the preferences or user needs—e.g., to
receive spatialized audio as an output—and relevant hardware pe-
ripherals available. This latter point is especially important for
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Project Data Collection Processing Synthesis
Twitter A11y [7] Images Crowdsourcing, OCR, URL following Text description
VizWiz [3] Smartphone camera Crowdsourcing Responses to questions
Winters et al. [10] Social media elements Microsoft APIs Context-specific sonifications
Picture Smart [9] Images OCR, Object detection, etc. Text description
VoiceOver Recognition [6] Images OCR, Object detection, etc. Description, interactive exploration

Table 1: Previous projects and how each fits the pipeline discussed in Section 2.

haptic renderings, since force-feedback devices and raised pin ar-
rays are not commonly owned and lack standard communication
protocols. The advertised capabilities are intended to ensure that the
media content returned can be properly displayed to and perceived
by the user.

In the context of IMAGE, the renderers are data structures speci-
fying how to present a rendering in software. For example, an audio
rendering, made up of different sections that can be presented inde-
pendently, would need to convey the audio data and the location of
each section in the audio data. A particular format for this in IMAGE
is indicated by the ca.mcgill.a11y.image.renderer.SegmentAudio
identifier. A client that includes this identifier in the request indi-
cates that it is capable of parsing and displaying the data received
in this format, which is also specified using a JSON schema.

3.2 Orchestrator
The orchestrator microservice is the only server component that di-
rectly communicates with the client. Upon receiving the request and
checking to ensure it is in a valid, understood format, the orchestra-
tor queries for a list of available preprocessors and handlers. This is
done by checking for running containers that contain either the pre-
procesor Docker label (ca.mcgill.a11y.image.preprocessor)
or the handler Docker label (ca.mcgill.a11y.image.handler)
and have at least one network in common with the orchestrator.
As this query is performed for each request, preprocessors and
handlers can be added or removed at runtime.

It then orders the preprocessors following their advertised prior-
ity (see Section 3.3) and serially forwards the client request with
preprocessor output data to each. Each preprocessor has a fixed
amount of time to respond—in IMAGE this is currently set to 15
seconds—before the orchestrator aborts the request.1 If the pre-
processor does respond in the allotted time, it either provides a
key and the data generated that the orchestrator will append to a
preprocessors key in the client request, or else it responds with
a “204 No Content” HTTP status to indicate that it is not able to
supply more information.

After the preprocessors have run, the orchestrator then forwards
the client request, including all the preprocessor outputs, to the
handlers in parallel. The handlers are then expected to respond
with an array containing the list of the renderings, if any, that were
produced. The renderings are concatenated and returned to the
client to be displayed to the user.

1In practice, total user response times for the entire pipeline are generally 3–10 s.

3.3 Preprocessors
Each preprocessor must respond to an HTTP POST containing the
request. The preprocessor then performs its task to extract a certain
kind of data. If successful, it replies with a key indicating the kind
of data returned and the actual content as a JSON object. This key
is not tied to a particular preprocessor microservice. For example,
many different machine learning object models exist and one may
be better suited to a particular task than another. If the preprocessor
microservices that run each model both use the same data structure
(e.g., ca.mcgill.a11y.image.preprocessor.objectDetection),
then any later component will still be able to correctly parse the
output of either. This allows preprocessors to be used as drop-in
replacements of each other so long as they use the same data struc-
ture.

As previously mentioned, preprocessors run serially and indi-
cate a priority at which to run. This priority is communicated to
the orchestrator by numeric value in the Docker label. For exam-
ple, a preprocessor would be in the first priority group by having
the label ca.mcgill.a11y.image.preprocessor: 1. Since each
request has previous successful results added to it, preprocessors
in later groups are guaranteed to obtain the outputs of those in
early groups that ran successfully. This permits two cases where
preprocessors use the outputs of others. In one case, a preprocessor
requires previous results to generate a response of its own. For
example, a preprocessor that groups the elements already found by
an object detection algorithm cannot run without any objects. As
such, if the object detection preprocessor does not run, the grouping
preprocessor must return a 204 status.

In the second case, a preprocessor can use information from a
previous preprocessor to choose not to run if it would be a waste
of time and resources. For example, that same object detection pre-
processor may be designed to work only on photographs. In the
absence of other information, this preprocessor should run on all
inputs, since it does not know whether the graphic is indeed a pho-
tograph, and will have to make its own determination whether it
can effectively treat the content. However, if a previous preproces-
sor has determined that the graphic is definitely not a photograph,
e.g., a chart, then the object detection preprocessor can safely return
a 204 status as its results would be irrelevant.

3.4 Handlers and Services
The handlers each receive a POST request containing the data
from the client and from the preprocessors that ran successfully.
Each handler must then determine which renderings, if any, it can
generate. This is based on the type of data included in the request
(e.g., image file), the advertised capabilities and renderers, and the
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returned preprocessor data. Any supported renderings are then
generated by whichever method is appropriate.

For example, a handler that focuses on objects in a photograph
can generate a text description of the detected attributes (e.g., indoor
or outdoor, type of location or focus) and the detected objects. This
text can be returned as a rendering that may be used by a built-in
screen reader or Braille display. The same text can be processed
through a text-to-speech engine and then spatialized using higher-
order ambisonics, a method of surround audio calculated using
sources positioned around the listener [2]. Pings representing the
locations of the objects can be interspersed, and the result returned
as a rendering in the form of an audio file. Offsets for each semantic
part of the file—i.e., the introduction and each object or group
of objects—can be generated as well, and used to create a third
rendering supporting easy user navigation within the audio file.

Certain tasks, such as text-to-speech (TTS) or generating higher-
order ambisonic audio, are used across many handlers and suffi-
ciently specialized to make implementing them in each handler
an onerous task. This motivates the concept of services to support
the generation of renderings in handlers. These services exist in
their own microservices and provide a separate API to enable many
handlers to perform these kinds of tasks. For example, the TTS
service currently used in IMAGE receives an HTTP POST request
containing the set of words or phrases to be processed. It then
responds with an audio file containing the resulting synthesized
speech and the location of each word or phrase in the file for further
processing. This audio file and metadata are then sent to a SuperCol-
lider service that, when triggered with certain Open Sound Control
(OSC) commands, generates a new audio file containing speech and
non-speech sound, spatialized using ambisonics.

4 DISCUSSION
To better illustrate how the IMAGE architecture supports flexible
development and deployment, we consider two use cases.

First, we consider a designer wishing to integrate a new spatial-
ized sound rendering of the contents of photographs. If existing
preprocessors provide sufficient information for the designer’s ren-
dering, then they need only create a new handler that follows one
of the existing renderer data formats. This can be in any language or
tools in which the designer is comfortable, so long as the eventual
Docker container encapsulating the new functionality follows the
simple data exchange format. These portions can be taken from
templates available in the source repository, further lightening the
burden. The designer need not make any changes to the browser ex-
tension, preprocessor chain, or any other handlers. Indeed they do
not even need to recompile the entire system, but only create their
new handler in a Docker container, which can then be dynamically
inserted into an already running server by editing a single configu-
ration file. In this scenario, the IMAGE architecture’s flexibility due
to formally defined data formats and modular microservices means
that the designer need only work within the strict confines of their
handler container, with complete freedom inside that boundary.

Next, we consider a machine learning researcher developing an
improved object recognizer. Similar to the designer scenario above,
the researcher can create a preprocessor container that uses the
same inputs and outputs as the default object detection container,

and simply swap it out. Once done, it can be tested by end users
via the browser extension they already have installed, with the
handlers creating renderings based on the new object detector.
This provides researchers with a practical testbed and deployment
opportunity that would formerly require building up the complete
system from scratch, an often insurmountable goal. By simplifying
the path from research prototype to deployment, we hope that more
machine learning researchers will consider offering their work for
practical use by the blind and low vision community.

5 FUTUREWORK
IMAGE and its architecture are works in progress. Although the
software structure has been successful so far in the development
of IMAGE, we hope that with the open source release of its soft-
ware, it may be used by others contributing to our project or in
other unrelated projects. As this occurs, we intend to refine the
architecture described here in response to the experiences of users.
Optimizations for performance will also be necessary as IMAGE
scales with more users and possibly needs to run across multiple
systems.

Additionally, at this point the architecture of IMAGE and its
components are more opaque than is ideal. High-quality documen-
tation and tools to visualize the state of a system running with
IMAGE’s architecture would be notable improvements to the us-
ability of the components discussed in this paper and others in the
IMAGE project. These would also aid quantitative evaluation of
a running system (e.g., maximum response time). Improvements
in documentation should make it easier for other developers to
get started. Similarly, improved debugging and visualization tools
should aid them when they encounter problems.

6 CONCLUSION
We introduced the Internet Multimodal Access to Graphical Ex-
ploration (IMAGE) project, along with its open-source framework,
designed to handle the three phases common to processing graphi-
cal information into outputs accessible to users who are blind or
low vision. These outputs can range in complexity from plain text
to interactive multimodal experiences. The IMAGE architecture,
formed of many independent microservices that are synchronized
by an orchestrator component, is highly modular and designed to
support quick development within individual components and over
the system as a whole. As the project progresses and the framework
discussed here becomes more mature through the addition of new
features and evaluation, we hope it will serve as a useful resource
for researchers and developers who create multimodal outputs from
inaccessible source media. Those interested in IMAGE can learn
more about the project through the repositories linked above or
the project site at https://image.a11y.mcgill.ca.
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