From 2c7f5f4b3726f183ee4c96abc08b296f047d26dd Mon Sep 17 00:00:00 2001 From: liangfei <103125590+anhuikylin@users.noreply.github.com> Date: Wed, 12 Jun 2024 11:42:33 +0800 Subject: [PATCH] Update Import_data.qmd --- content/Import_data.qmd | 53 ++++++++++++++++++++++++++++++++++++++++- 1 file changed, 52 insertions(+), 1 deletion(-) diff --git a/content/Import_data.qmd b/content/Import_data.qmd index 4b4bbb6..e0c2783 100644 --- a/content/Import_data.qmd +++ b/content/Import_data.qmd @@ -1 +1,52 @@ -# Downstream Data Process {.unnumbered} +# Data import {.unnumbered} + +### Upload MS file + +Click the dropdown button **`Import file`** and upload MS1, MS/MS files, as shown in the structure below. Click the **`1. Check input file`** button to check the data. After confirming correctness, click the **`2. Peak picking`** button for peak picking. This is a relatively lengthy process, and the progress bar will be displayed in the bottom right corner. + +[![](https://pic.imgdb.cn/item/666847eed9c307b7e9156494.png)](https://pic.imgdb.cn/item/666847eed9c307b7e9156494.png) + + +### Data cleaning + +Data cleaning includes: **`Overview`**, **`Remove noisy features`**, **`Remove outliers`**, **`Missing value imputation`**, and **`Normalization`**. + +[![](https://pic.imgdb.cn/item/66684f96d9c307b7e91f3551.png)](https://pic.imgdb.cn/item/66684f96d9c307b7e91f3551.png) + +#### Overview + +First, upload sample information and set parameters, then **`Update sample information`**, click **`Start`**, and finally open the **`Interactive plot`** button to check for missing sample data. + +[![](https://pic.imgdb.cn/item/66685147d9c307b7e921463d.png)](https://pic.imgdb.cn/item/66685147d9c307b7e921463d.png) + +Open the interactive button, then hover the mouse over the image to see detailed information about the samples in the detailed image. + +[![](https://pic.imgdb.cn/item/66685281d9c307b7e922c693.png)](https://pic.imgdb.cn/item/66685281d9c307b7e922c693.png) + +#### Remove noisy features + +First, adjust the parameters for grouping, samples, and QC missing frequency on the left side, click **`Find noisy features`** to identify noisy features, and then click **`Remove and update`** to update the data. + +[![](https://pic.imgdb.cn/item/66684d74d9c307b7e91ca541.png)](https://pic.imgdb.cn/item/66684d74d9c307b7e91ca541.png) + +#### Remove outliers + +First, adjust the parameters on the left side, click **`Find outliers`** to identify outliers, open the **`Interactive plot`**, hover the mouse over the outlier sample to view outlier sample information, remove outlier values. Then switch to negative spectrum and repeat the operation, then click **`Remove and update`** to update the data. + +[![](https://pic.imgdb.cn/item/6668565ed9c307b7e927bfe8.png)](https://pic.imgdb.cn/item/6668565ed9c307b7e927bfe8.png) + +#### Missing value imputation + +Select the method for missing value imputation, such as: knn, rf, mean, median, zero, mininum, bpca, svdlmpute, ppca, etc., click **`Start`** to proceed with imputation. + +[![](https://pic.imgdb.cn/item/66685886d9c307b7e92b4767.png)](https://pic.imgdb.cn/item/66685886d9c307b7e92b4767.png) + +#### Data standardization + +First, adjust the method for filling missing values on the left side, such as svr, total, mean,median, pqn, loess ppca, etc., click **`Start normalization`** to standardize the data. Select PCA color grouping. Then click **`Visualize`** to visualize the data before and after normalization. Open the **`Interactive plot`** button, and you can see the 3D PCA plot. Hovering the mouse over it allows you to see detailed information about the samples. Finally, click the **`Export normalized data`** button to download the normalized data. + +[![](https://pic.imgdb.cn/item/66685bb6d9c307b7e92f72cf.png)](https://pic.imgdb.cn/item/66685bb6d9c307b7e92f72cf.png) + + +[![](https://pic.imgdb.cn/item/663aeda60ea9cb1403dff9d3.png)](https://pic.imgdb.cn/item/663aeda60ea9cb1403dff9d3.png) +