forked from lawrennd/gp
-
Notifications
You must be signed in to change notification settings - Fork 2
/
gpLogLikeGradients.m
331 lines (294 loc) · 10.3 KB
/
gpLogLikeGradients.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
function [gParam, gX_u, gX, g_beta] = gpLogLikeGradients(model, X, M, X_u)
% GPLOGLIKEGRADIENTS Compute the gradients for the parameters and X.
% FORMAT
% DESC computes the gradients of the Gaussian process log
% likelihood with respect to the parameters of the model.
% ARG : model : the model structure for which gradients are computed.
% RETURN gParam : the gradient of the log likelihood with respect to
% the model parameters.
%
% DESC computes the gradients of the Gaussian process log
% likelihood with respect to the parameters of the model and with
% respect to any inducing variables.
% ARG : model : the model structure for which gradients are computed.
% RETURN gParam : the gradient of the log likelihood with respect to
% the model parameters.
% RETURN gX_u : the gradient of the log likelihood with respect to
% the inducing variables. If inducing variables aren't being used
% this returns zero.
%
% DESC computes the gradients of the Gaussian process log
% likelihood with respect to the parameters of the model, with
% respect to any inducing variables and with respect to input data
% locations. This is used for computing gradients in the GP-LVM.
% ARG : model : the model structure for which gradients are computed.
% RETURN gParam : the gradient of the log likelihood with respect to
% the model parameters (including any gradients with respect to beta).
% RETURN gX_u : the gradient of the log likelihood with respect to
% the inducing variables. If inducing variables aren't being used
% this returns zero.
% RETURN gX : the gradient of the log likelihood with respect to
% the input data locations.
%
% DESC computes the gradients of the Gaussian process log
% likelihood with respect to the parameters of the model, with
% respect to any inducing variables and with respect to input data
% locations. This is used for computing gradients in the GP-LVM.
% ARG : model : the model structure for which gradients are computed.
% RETURN gParam : the gradient of the log likelihood with respect to
% the model parameters.
% RETURN gX_u : the gradient of the log likelihood with respect to
% the inducing variables. If inducing variables aren't being used
% this returns zero.
% RETURN gX : the gradient of the log likelihood with respect to
% the input data locations.
% RETURN gbeta : the gradient of the log likelihood with respect to beta.
%
% DESC computes the gradients of the Gaussian process log
% likelihood with respect to the model parameters (and optionally,
% as above with respect to inducing variables and input data) given
% the target data, input data and inducing variable
% locations.
% ARG : model : the model structure for which gradients are computed.
% ARG : X : the input data locations for which gradients are computed.
% ARG : M : the scaled and bias removed target data for which the
% gradients are computed.
% ARG : X_U : the inducing variable locations for which gradients are computed.
% RETURN gParam : the gradient of the log likelihood with respect to
% the model parameters.
%
% SEEALSO : gpLogLikelihood, modelLogLikeGradients, fgplvmLogLikeGradients
%
% COPYRIGHT : Neil D. Lawrence, 2005, 2006, 2007, 2009
%
% MODIFICATIONS : Carl Henrik Ek, 2008
% GP
if nargin < 4
if isfield(model, 'X_u')
X_u = model.X_u;
else
X_u = [];
end
if nargin < 3 && ~isfield(model, 'S')
M = model.m;
end
if nargin < 2
X = model.X;
end
end
gX_u = [];
gX = [];
g_scaleBias = gpScaleBiasGradient(model);
if isfield(model, 'meanFunction') && ~isempty(model.meanFunction)
g_meanFunc = gpMeanFunctionGradient(model);
else
g_meanFunc = [];
end
switch model.approx
case 'ftc'
% Full training conditional.
if nargout > 2
%%% Prepare to Compute Gradients with respect to X %%%
gKX = kernGradX(model.kern, X, X);
gKX = gKX*2;
dgKX = kernDiagGradX(model.kern, X);
for i = 1:model.N
gKX(i, :, i) = dgKX(i, :);
end
gX = zeros(model.N, model.q);
end
%%% Gradients of Kernel Parameters %%%
g_param = zeros(1, model.kern.nParams);
if isfield(model, 'beta')
g_beta = 0;
else
g_beta = [];
end
% For very high D, we use the matrix S which is M*M'
if isfield(model, 'S')
gK = localSCovarianceGradients(model);
if nargout > 2
%%% Compute Gradients with respect to X %%%
counter = 0;
for i = 1:model.N
counter = counter + 1;
for j = 1:model.q
gX(i, j) = gX(i, j) + gKX(:, j, i)'*gK(:, counter);
end
end
end
%%% Compute Gradients of Kernel Parameters %%%
g_param = g_param + kernGradient(model.kern, X, gK);
else
for k = 1:model.d
gK = localCovarianceGradients(model, M(:, k), k);
if nargout > 2
%%% Compute Gradients with respect to X %%%
ind = gpDataIndices(model, k);
counter = 0;
for i = ind
counter = counter + 1;
for j = 1:model.q
gX(i, j) = gX(i, j) + gKX(ind, j, i)'*gK(:, counter);
end
end
end
%%% Compute Gradients of Kernel Parameters %%%
if model.isMissingData
g_param = g_param ...
+ kernGradient(model.kern, ...
X(model.indexPresent{k}, :), ...
gK);
else
g_param = g_param + kernGradient(model.kern, X, gK);
end
end
if isfield(model, 'beta') && model.optimiseBeta
if size(model.beta, 1) == 1
g_beta = g_beta + sum(diag(gK));
elseif size(model.beta, 2)==1 ...
& size(model.beta, 1)==model.N
g_beta = g_beta + diag(gK);
elseif size(model.beta, 2) == model.d ...
& size(model.beta, 1) == model.N
g_beta(:, k) = diag(gK);
else
error('Unusual dimensions for model.beta.');
end
end
end
case {'dtc', 'dtcvar', 'fitc', 'pitc'}
% Sparse approximations.
[gK_u, gK_uf, gK_star, g_beta] = gpCovGrads(model, M);
%%% Compute Gradients of Kernel Parameters %%%
gParam_u = kernGradient(model.kern, X_u, gK_u);
gParam_uf = kernGradient(model.kern, X_u, X, gK_uf);
g_param = gParam_u + gParam_uf;
%%% Compute Gradients with respect to X_u %%%
gKX = kernGradX(model.kern, X_u, X_u);
% The 2 accounts for the fact that covGrad is symmetric
gKX = gKX*2;
dgKX = kernDiagGradX(model.kern, X_u);
for i = 1:model.k
gKX(i, :, i) = dgKX(i, :);
end
if ~model.fixInducing | nargout > 1
% Allocate space for gX_u
gX_u = zeros(model.k, model.q);
% Compute portion associated with gK_u
for i = 1:model.k
for j = 1:model.q
gX_u(i, j) = gKX(:, j, i)'*gK_u(:, i);
end
end
% Compute portion associated with gK_uf
gKX_uf = kernGradX(model.kern, X_u, X);
for i = 1:model.k
for j = 1:model.q
gX_u(i, j) = gX_u(i, j) + gKX_uf(:, j, i)'*gK_uf(i, :)';
end
end
end
if nargout > 2
%%% Compute gradients with respect to X %%%
% Allocate space for gX
gX = zeros(model.N, model.q);
% this needs to be recomputed so that it is wrt X not X_u
gKX_uf = kernGradX(model.kern, X, X_u);
for i = 1:model.N
for j = 1:model.q
gX(i, j) = gKX_uf(:, j, i)'*gK_uf(:, i);
end
end
end
otherwise
error('Unknown model approximation.')
end
switch model.approx
case 'ftc'
% Full training conditional. Nothing required here.
case 'dtc'
% Deterministic training conditional.
case {'fitc', 'dtcvar'}
% Fully independent training conditional.
% Variational sparse approximation.
if nargout > 2
% deal with diagonal term's effect on X gradients..
gKXdiag = kernDiagGradX(model.kern, X);
for i = 1:model.N
gX(i, :) = gX(i, :) + gKXdiag(i, :)*gK_star(i);
end
end
% deal with diagonal term's affect on kernel parameters.
g_param = g_param + kernDiagGradient(model.kern, X, gK_star);
case 'pitc'
% Partially independent training conditional.
if nargout > 2
% deal with block diagonal term's effect on X gradients.
startVal = 1;
for i = 1:length(model.blockEnd)
endVal = model.blockEnd(i);
ind = startVal:endVal;
gKXblock = kernGradX(model.kern, X(ind, :), X(ind, :));
% The 2 accounts for the fact that covGrad is symmetric
gKXblock = gKXblock*2;
% fix diagonal
dgKXblock = kernDiagGradX(model.kern, X(ind, :));
for j = 1:length(ind)
gKXblock(j, :, j) = dgKXblock(j, :);
end
for j = ind
for k = 1:model.q
subInd = j - startVal + 1;
gX(j, k) = gX(j, k) + gKXblock(:, k, subInd)'*gK_star{i}(:, subInd);
end
end
startVal = endVal + 1;
end
end
% deal with block diagonal's effect on kernel parameters.
for i = 1:length(model.blockEnd);
ind = gpBlockIndices(model, i);
g_param = g_param ...
+ kernGradient(model.kern, X(ind, :), gK_star{i});
end
otherwise
error('Unrecognised model approximation');
end
if nargout < 4
if (~isfield(model, 'optimiseBeta') && ~strcmp(model.approx, 'ftc')) ...
| model.optimiseBeta
% append beta gradient to end of parameters
gParam = [g_param(:)' g_meanFunc g_scaleBias g_beta];
else
gParam = [g_param(:)' g_meanFunc g_scaleBias];
end
else
gParam = [g_param(:)' g_meanFunc g_scaleBias];
end
% if there is only one output argument, pack gX_u and gParam into it.
if nargout == 1;
gParam = [gX_u(:)' gParam];
end
end
function gK = localCovarianceGradients(model, y, dimension)
% LOCALCOVARIANCEGRADIENTS
if ~isfield(model, 'isSpherical') || model.isSpherical
invKy = model.invK_uu*y;
gK = -model.invK_uu + invKy*invKy';
else
if model.isMissingData
m = y(model.indexPresent{dimension});
else
m = y;
end
invKy = model.invK_uu{dimension}*m;
gK = -model.invK_uu{dimension} + invKy*invKy';
end
gK = gK*.5;
end
function gK = localSCovarianceGradients(model)
% LOCALCOVARIANCEGRADIENTS
gK = -model.d*model.invK_uu + model.invK_uu*model.S*model.invK_uu;
gK = gK*.5;
end