forked from lawrennd/gpsim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpnddisimExtractParamTransformSettings.m
63 lines (50 loc) · 1.73 KB
/
gpnddisimExtractParamTransformSettings.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
function [paramtransformsettings, names] = gpnddisimExtractParamTransformSettings(model)
% NDDISIMEXTRACTPARAMTRANSFORMSETTINGS Extract the parameter transform settings of a GPNDDISIM model.
% FORMAT
% DESC extracts the model parameters from a structure containing
% the information about a Gaussian process for single input motif
% modelling.
% ARG model : the model structure containing the information about
% the model.
% RETURN params : a vector of parameters from the model.
%
% SEEALSO : gpdisimCreate, gpdisimExpandParam, modelExtractParam
%
% COPYRIGHT : Neil D. Lawrence, 2006
%
% COPYRIGHT : Antti Honkela, 2007
%
% COPYRIGHT : Jaakko Peltonen, 2011
% GPSIM
if nargout>1
[paramtransformsettings, names] = kernExtractParamTransformSettings(model.kern);
for i=1:model.numGenes,
names{end+1}=['Basal transcription ' num2str(i)];
end
if model.numGenes>0,
if (model.use_disimstartmean==1),
for i=1:model.numGenes,
names{end+1}=['NDDISIM startmean ' num2str(i)];
end;
end;
end;
names{end+1}=['NDSIM mean ' num2str(i)];
else
paramtransformsettings = kernExtractParamTransformSettings(model.kern);
end
% Transformation settings for basal transcription rates
if model.numGenes>0,
for k=1:model.numGenes,
paramtransformsettings = {paramtransformsettings{:}, model.bTransform(k).transformsettings};
end;
end;
% Transformation settings for DISIM start means
if model.numGenes>0,
if (model.use_disimstartmean==1),
for i=1:model.numGenes,
paramtransformsettings = {paramtransformsettings{:}, model.disimStartMeanTransform(k).transformsettings};
end;
end;
end;
% Transformation settings for SIM mean
paramtransformsettings = {paramtransformsettings{:}, model.simMeanTransform.transformsettings};