forked from Thales-research-institute/DeepmRNALoc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
303 lines (252 loc) · 10.2 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import numpy as np
import pandas as pd
y_pred_all = []
command = '/home/zshen/.conda/envs/mRNA/bin/python /home/zshen/Workplace/workplace/DeepmRNALoc_test/utils/dnacgr_forweb.py'
def fasta2CGRS(filename,filename_result):
print('---- Create CGR figure start! ----')
fin_command = command +' '+ filename + ' --dest-dir '+ filename_result + ' --name '+ ' tmp ' +' --save --dpi 50 '
os.system(fin_command)
print(filename.split('/')[-1])
print('---- Create CGR figure end! ----\n\n')
def get_tris(k):
nucle_com = []
chars = ['A', 'C', 'G', 'T']
base = len(chars)
end = len(chars)**k
for i in range(0, end):
n = i
add = ''
for j in range(k):
ch = chars[n % base]
n = int(n/base)
add += ch
nucle_com.append(add)
return nucle_com
def get_kmer(path,k):
fasta = open(path)
fasta = fasta.read()
sequence = "".join(fasta.split("\n")[1:])
sequence = sequence.replace("N", "")
print(len(sequence))
kmerbases = get_tris(k)
kmermap = {}
for kmer in kmerbases:
kmermap[kmer] = 0
for index in range(len(sequence)-k+1):
kmermap[sequence[index:index+k]] += 1
result = []
for kmer in kmermap:
result.append(kmermap[kmer])
return result
def get_one_hot(arr,num_classes):
res = np.eye(num_classes)[arr]
return res
# 构建模型 载入模型的参数
# model define
import os
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.losses import CategoricalCrossentropy
from tensorflow.keras.layers import Bidirectional
def build_model(layer_size = 128,
learning_rate = 1e-3,
dropout_rate = 0.3):
model = keras.models.Sequential()
# model.add(keras.layers.Flatten(input_shape=[4**1+4**2+4**3+4**4+4**5+4**6+4**7+4**8+230*300]))
model.add(keras.layers.Flatten(input_shape=[4**1+4**2+4**3+4**4+4**5+4**6+4**7+4**8+184*247]))
model.add(keras.layers.Reshape((4**1+4**2+4**3+4**4+4**5+4**6+4**7+4**8+184*247,1)))
model.add(keras.layers.Conv1D(64, 3,strides=2,padding="same"))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.05))
model.add(keras.layers.Conv1D(64, 3,strides=1,padding="same"))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.05))
model.add(keras.layers.MaxPooling1D(2))
model.add(keras.layers.Dropout(dropout_rate))
model.add(keras.layers.Conv1D(128, 3,strides=2,padding="same"))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.05))
model.add(keras.layers.Conv1D(128, 3,strides=1,padding="same"))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.05))
model.add(keras.layers.MaxPooling1D(2))
model.add(keras.layers.Dropout(dropout_rate))
model.add(keras.layers.Conv1D(256, 3,strides=2,padding="same"))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.05))
model.add(keras.layers.Conv1D(256, 3,strides=1,padding="same"))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.05))
model.add(keras.layers.MaxPooling1D(2))
model.add(keras.layers.Dropout(dropout_rate))
model.add(keras.layers.Conv1D(512, 3,strides=2,padding="same"))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.05))
model.add(keras.layers.Conv1D(512, 3,strides=1,padding="same"))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.05))
model.add(keras.layers.MaxPooling1D(2))
model.add(keras.layers.Dropout(dropout_rate))
#LSTM
model.add(Bidirectional(keras.layers.CuDNNLSTM(512, return_sequences=True)))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.05))
model.add(Bidirectional(keras.layers.CuDNNLSTM(512, return_sequences=False)))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.05))
# model.add(keras.layers.GlobalAveragePooling1D())
model.add(keras.layers.Dropout(dropout_rate))
#FCN
model.add(keras.layers.Dense(layer_size,kernel_initializer='glorot_uniform'))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.05))
# model.add(keras.layers.Dropout(0.3))
model.add(keras.layers.Dense(layer_size*2,kernel_initializer='glorot_uniform'))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.LeakyReLU(alpha=0.05))
# model.add(keras.layers.Dropout(0.3))
model.add(keras.layers.Dense(layer_size*4,kernel_initializer='glorot_uniform'))
# model.add(keras.layers.Dropout(dropout_rate))
model.add(keras.layers.Dense(5,activation="softmax"))
loss = CategoricalCrossentropy(label_smoothing=0.01)
model.compile(loss=loss,
optimizer = keras.optimizers.Adam(learning_rate,decay=1e-3 / 200),
metrics=['categorical_accuracy'])
return model
model = build_model()
print('---- Init model start! ----')
logdir = '/home/zshen/Workplace/workplace/DeepmRNALoc_test/checkpoints/Web'
if not os.path.exists(logdir):
os.mkdir(logdir)
output_model_file = os.path.join(logdir,"mRNA_model_indep.h5")
print(output_model_file)
model.load_weights(output_model_file)
print('---- Init model end! ----')
# filename = '/home/zshen/Workplace/workplace/DeepmRNALoc_test/Data/data/Nucleus_indep1.fasta'
# filename = '/home/zshen/Workplace/workplace/DeepmRNALoc_test/iLoc/Nucleus.fasta'
# filename = '/home/zshen/Workplace/workplace/DeepmRNALoc_test/web_store/savedfile.fasta'
# filename = '/home/zshen/Workplace/workplace/DeepmRNALoc_test/iLoc/Endoplasmic_reticulum.fasta'
# filename = '/home/zshen/Workplace/workplace/DeepmRNALoc_test/iLoc/Cytosol.fasta'
# filename = '/home/zshen/Workplace/workplace/DeepmRNALoc_test/web_store/savedfile1.txt'
# DeepmRNALoc 0.80112
# filename = '/home/zshen/Workplace/workplace/DeepmRNALoc_test/data/iLoc/Nucleus.fasta'
# DeepmRNALoc 0.7922
# filename = '/home/zshen/Workplace/workplace/DeepmRNALoc_test/data/iLoc/Endoplasmic_reticulum.fasta'
# DeepmRNALoc 0.9068
filename = '/home/zshen/Workplace/workplace/DeepmRNALoc_test/data/iLoc/Cytosol.fasta'
# extract fasta sequence
seq = []
name = []
n = 0
with open(filename) as fs:
for line in fs:
if n % 2 == 0:
name.append(line)
else:
seq.append(line)
n += 1
# preprocess sequence
for i in range(len(seq)):
while seq[i][-1] == '\n':
seq[i] = seq[i][:-1]
print(seq[0][-1])
print(seq[0])
# get feature CGR
import os
import shutil
import glob
print('---- Store fasta start! ----')
if os.path.exists("/home/zshen/Workplace/workplace/DeepmRNALoc_test/tmp/fasta/"):
shutil.rmtree("/home/zshen/Workplace/workplace/DeepmRNALoc_test/tmp/fasta/")
os.mkdir("/home/zshen/Workplace/workplace/DeepmRNALoc_test/tmp/fasta/")
for i in range(len(seq)):
with open("/home/zshen/Workplace/workplace/DeepmRNALoc_test/tmp/fasta/{}.fasta".format(i),'w') as fs:
fs.writelines(name[i])
fs.writelines(seq[i])
print(name[i])
print('---- Store fasta end! ----')
name = []
fasta_list = glob.glob('/home/zshen/Workplace/workplace/DeepmRNALoc_test/tmp/fasta/*')
for fasta_path in fasta_list:
# get CGR img
filename = fasta_path
filename_result = '/home/zshen/Workplace/workplace/DeepmRNALoc_test/tmp/CGR'
fasta2CGRS(filename,filename_result)
# get name
with open(filename) as fs:
n = 0
for line in fs:
if n % 2 == 0:
name.append('name' + str(line))
print(line)
n += 1
# get feature k_mer = 1 2 3 4 5 6 7 8
k_mer1 = []
k_mer2 = []
k_mer3 = []
k_mer4 = []
k_mer5 = []
k_mer6 = []
k_mer7 = []
k_mer8 = []
print('---- Extracte kmer feature start! ----')
k_mer1.append(get_kmer(fasta_path, 1))
print(np.array(k_mer1).shape)
k_mer2.append(get_kmer(fasta_path, 2))
print(np.array(k_mer2).shape)
k_mer3.append(get_kmer(fasta_path, 3))
print(np.array(k_mer3).shape)
k_mer4.append(get_kmer(fasta_path, 4))
print(np.array(k_mer4).shape)
k_mer5.append(get_kmer(fasta_path, 5))
print(np.array(k_mer5).shape)
k_mer6.append(get_kmer(fasta_path, 6))
print(np.array(k_mer6).shape)
k_mer7.append(get_kmer(fasta_path, 7))
print(np.array(k_mer7).shape)
k_mer8.append(get_kmer(fasta_path, 8))
print(np.array(k_mer8).shape)
k_mer = np.concatenate((k_mer1,k_mer2,k_mer3,k_mer4,k_mer5,k_mer6,k_mer7,k_mer8),axis = 1)
print(np.array(k_mer).shape)
print('---- Extracte kmer feature end! ----')
# extract feature from CGR image
import cv2
CGR = []
path_CGR_figure = '/home/zshen/Workplace/workplace/DeepmRNALoc_test/tmp/CGR/tmp.png'
print('---- Extracte CGR feature start! ----')
img = cv2.imread(path_CGR_figure)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = img[30:214, 41:288]
CGR.append(img)
CGR = np.array(CGR)
# CGR = CGR.reshape(-1,240*320)
CGR = CGR.reshape(-1,184*247)
CGR = CGR/255.0
print(CGR.shape)
print('---- Extracte kmer feature end! ----')
# concat feature
# k_mer = np.squeeze(k_mer)
print(np.array(k_mer).shape)
print(np.array(CGR).shape)
test_x = np.concatenate((k_mer,CGR),axis = 1)
print(np.array(test_x).shape)
# standardize
import pickle
f = open('/home/zshen/Workplace/workplace/DeepmRNALoc_test/checkpoints/Web/scalar.pkl','rb')
scaler = pickle.load(f)
test_x = scaler.transform(test_x)
# predict
target_names = ['Cytoplasm','Endoplasmic_reticulum','Extracellular_region','Mitochondria','Nucleus']
y_pred = model.predict_classes(test_x)
y_pred_all.extend(y_pred)
print("pred: "+ target_names[y_pred[0]])
print('----------------------------\n\n')
# save result
res = 0
with open("/home/zshen/Workplace/workplace/DeepmRNALoc_test/web_store/savedfile2.txt",'w') as fs:
for n in range(len(y_pred_all)):
fs.writelines("{} : {}".format(name[n][:-1],target_names[y_pred_all[n]]+'\n'))
if y_pred_all[n] == 0:
res += 1
print("{} / {}".format(res,len(y_pred_all)))
print(res/len(y_pred_all))