forked from avirajdongare/BooleanAutocrats
-
Notifications
You must be signed in to change notification settings - Fork 0
/
blackjack
255 lines (169 loc) · 6.86 KB
/
blackjack
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# let's import Random library
import random
# Let's give the info of the card's suits, ranks and values
suits = ('Hearts', 'Diamonds', 'Spades', 'Clubs')
ranks = ('Two', 'Three', 'Four', 'Five', 'Six', 'Seven', 'Eight', 'Nine', 'Ten', 'Jack', 'Queen', 'King', 'Ace')
values = {'Two':2, 'Three':3, 'Four':4, 'Five':5, 'Six':6, 'Seven':7, 'Eight':8, 'Nine':9, 'Ten':10, 'Jack':10,
'Queen':10, 'King':10, 'Ace':11}
playing = True
# Following below is the Card Class which will initiate a card with the given suit and rank
class Card:
def __init__(self,suit,rank):
self.suit = suit
self.rank = rank
def __str__(self):
return self.rank + ' of ' + self.suit
# Following below is the Deck Class which will create a deck from the given cards
class Deck:
def __init__(self):
self.deck = [] # start with an empty list
for suit in suits:
for rank in ranks:
self.deck.append(Card(suit,rank)) # build Card objects and add them to the list
def __str__(self):
deck_comp = '' # start with an empty string
for card in self.deck:
deck_comp += '\n '+card.__str__() # add each Card object's print string
return 'The deck has:' + deck_comp
def shuffle(self): # shuffle function will shuffle the whole deck
random.shuffle(self.deck)
def deal(self): # deal function will take one card from the deck
single_card = self.deck.pop()
return single_card
# Following is the Hand Class which will add the cards from deck class to the player's hand
class Hand:
def __init__(self):
self.cards = [] # start with an empty list as we did in the Deck class
self.value = 0 # start with zero value
self.aces = 0 # add an attribute to keep track of aces
# add_card function will add a card to the player's hand
def add_card(self,card):
self.cards.append(card)
self.value += values[card.rank]
# since ace can have two values as 1 or 11, adjust_for_ace will adjust the value of ace
def adjust_for_ace(self):
while self.value > 21 and self.aces:
self.value -= 10
self.aces -= 1
''' In addition to decks of cards and hands, we need to keep track of a Player's starting chips, bets, and ongoing winnings.
This could be done using global variables, but in the spirit of object oriented programming, let's make a Chips class instead! '''
class Chips:
def __init__(self):
self.total = 100 # This can be set to a default value or supplied by a user input
self.bet = 0
def win_bet(self):
self.total += self.bet
def lose_bet(self):
self.total -= self.bet
# FUNCTIONS HERE:
# FUNCTION FOR TAKING BETS
def take_bet(chips):
while True:
try:
chips.bet = int(input('How many chips would you like to bet? '))
except ValueError:
print('Sorry, a bet must be an integer!')
else:
if chips.bet > chips.total:
print("Sorry, your bet can't exceed",chips.total)
else:
break
# function for taking hits
def hit(deck,hand):
hand.add_card(deck.deal())
hand.adjust_for_ace()
# function prompting the Player to Hit or Stand
def hit_or_stand(deck,hand):
global playing # to control an upcoming while loop
while True:
x = input("Would you like to Hit or Stand? Enter 'h' or 's' ")
if x[0].lower() == 'h':
hit(deck,hand) # hit() function defined above
elif x[0].lower() == 's':
print("Player stands. Dealer is playing.")
playing = False
else:
print("Sorry, please try again.")
continue
break
# functions to display cards
def show_some(player,dealer):
print("\nDealer's Hand:")
print(" <card hidden>")
print('',dealer.cards[1])
print("\nPlayer's Hand:", *player.cards, sep='\n ')
def show_all(player,dealer):
print("\nDealer's Hand:", *dealer.cards, sep='\n ')
print("Dealer's Hand =",dealer.value)
print("\nPlayer's Hand:", *player.cards, sep='\n ')
print("Player's Hand =",player.value)
# functions to handle end of game scenarios
def player_busts(player,dealer,chips):
print("Player busts!")
chips.lose_bet()
def player_wins(player,dealer,chips):
print("Player wins!")
chips.win_bet()
def dealer_busts(player,dealer,chips):
print("Dealer busts!")
chips.win_bet()
def dealer_wins(player,dealer,chips):
print("Dealer wins!")
chips.lose_bet()
def push(player,dealer):
print("Dealer and Player tie! It's a push.")
# AND NOW ON TO THE GAME!!!
while True:
# Print an opening statement
print('Welcome to BlackJack! Get as close to 21 as you can without going over!\n\
Dealer hits until she reaches 17. Aces count as 1 or 11.')
# Create & shuffle the deck, deal two cards to each player
deck = Deck()
deck.shuffle()
player_hand = Hand()
player_hand.add_card(deck.deal())
player_hand.add_card(deck.deal())
dealer_hand = Hand()
dealer_hand.add_card(deck.deal())
dealer_hand.add_card(deck.deal())
# Set up the Player's chips
player_chips = Chips() # remember the default value is 100
# Prompt the Player for their bet
take_bet(player_chips)
# Show cards (but keep one dealer card hidden)
show_some(player_hand,dealer_hand)
while playing: # recall this variable from our hit_or_stand function
# Prompt for Player to Hit or Stand
hit_or_stand(deck,player_hand)
# Show cards (but keep one dealer card hidden)
show_some(player_hand,dealer_hand)
# If player's hand exceeds 21, run player_busts() and break out of loop
if player_hand.value > 21:
player_busts(player_hand,dealer_hand,player_chips)
break
# If Player hasn't busted, play Dealer's hand until Dealer reaches 17
if player_hand.value <= 21:
while dealer_hand.value < 17:
hit(deck,dealer_hand)
# Show all cards
show_all(player_hand,dealer_hand)
# Run different winning scenarios
if dealer_hand.value > 21:
dealer_busts(player_hand,dealer_hand,player_chips)
elif dealer_hand.value > player_hand.value:
dealer_wins(player_hand,dealer_hand,player_chips)
elif dealer_hand.value < player_hand.value:
player_wins(player_hand,dealer_hand,player_chips)
else:
push(player_hand,dealer_hand)
# Inform Player of their chips total
print("\nPlayer's winnings stand at",player_chips.total)
# Ask to play again
new_game = input("Would you like to play another hand? Enter 'y' or 'n' ")
if new_game[0].lower()=='y':
playing=True
continue
else:
print("Thanks for playing!")
break
# END OF THE PROGRAM!