forked from taylor-lab/mutationSignatureWaterfallPlots
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathformat_plotting_info.py
151 lines (111 loc) · 8.2 KB
/
format_plotting_info.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#written by Noah Friedman
import sys
import argparse
import os
import pandas as pd
import numpy as np
from collections import Counter
sys.path.append('/ifs/work/taylorlab/friedman/')
#returnMode spex
#slightly a misnomer finds the nth biggest non signature of interest and returns it
#n is 1 indexed for readability so we subtract 1
def find_nth_biggest_non_primary_sig(row, primarySig, n, prefix='Signature.'):
colNames = row.to_dict().keys()
signatureColumns = [i for i in colNames if prefix in i]
rowSigsOnly = row[signatureColumns]
rowAsDict = rowSigsOnly.to_dict()
items = rowAsDict.items()
sortedItems = sorted(items, key=lambda x: x[1], reverse=True)
#remove the dominant signature
sortedItemsLimited = [z for z in sortedItems if z[0] != primarySig]
return sortedItemsLimited[n - 1][0], sortedItemsLimited[n - 1][1]
def merge_signature_columns(df, mode='Stratton', drop=True, smokingMerge=False, confidence=True, mean=True, prefix='mean_'):
if mode == 'Stratton':
if confidence: df['confidence_APOBEC'] = df.apply(lambda row: max(row['confidence_2'], row['confidence_13']), axis=1)
if mean: df[prefix + 'APOBEC'] = df.apply(lambda row: row[prefix + '2'] + row[prefix + '13'], axis=1)
if confidence: df['confidence_MMR'] = df.apply(lambda row: max(row['confidence_6'], row['confidence_15'], row['confidence_20'], row['confidence_21'], row['confidence_26']), axis=1)
if mean: df[prefix + 'MMR'] = df.apply(lambda row: row[prefix + '6'] + row[prefix + '15'] + row[prefix + '20'] + row[prefix + '21'] + row[prefix + '26'], axis=1)
if mean:
if smokingMerge: #smoking merge, if specified merges the smoking signature, mutyh, aflatoxin and chewing tobacco (which are all usually smoking)
df[prefix + 'SMOKING'] = df.apply(lambda row: row[prefix + '4'] + row[prefix + '18'] + row[prefix + '24'] + row[prefix + '29'], axis=1)
dropCols = []
if mean: dropCols += [prefix + '2', prefix + '13', prefix + '6', prefix + '15', prefix + '20', prefix + '21', prefix + '26']
if smokingMerge: dropCols += [prefix + '4', prefix + '18', prefix + '24', prefix + '29']
if confidence: dropCols += ['confidence_2', 'confidence_13', 'confidence_6', 'confidence_15', 'confidence_20', 'confidence_21', 'confidence_26']
if drop: #drop cols if asked
df = df.drop(dropCols, axis=1)
return df
#returns the dominant signautre for a row of a df expressed as a dict with the specified signatures under consideration
def get_dominant_signature(rowAsDict, prefix='mean'):
cols = [x for x in rowAsDict.keys() if 'Signature.' in x]
tupList = []
for key, value in rowAsDict.items():
if prefix in key: tupList.append((key, value))
sortedSigs = sorted(tupList, key = lambda tup: tup[1], reverse=True)
return sortedSigs[0][0]
def calculate_ordering_val(row):
return 0
def main():
parser = argparse.ArgumentParser(description='Arg parser for this script')
parser.add_argument('--signature_data_file', help='file with signature information', default='/ifs/res/taylorlab/impact_sigs/mixedpact_data_mutations_unfiltered.sigs.tab.txt')
parser.add_argument('--writeFileName', help='filename for file', default='signatureWaterfallPlot')
parser.add_argument('--writeFileDir', help='directory to write file in', default='/ifs/work/taylorlab/friedman/myAdjustedDataFiles')
parser.add_argument('--idsFile', help='path to file listing ids to analyze', default='test_signature_case_ids.txt')
parser.add_argument('--primarySortSig', help='The signature to order/display data by', default='Signature.AGE')
parser.add_argument('--minMutThreshold', help='The minumum number of mutations below which we wont call signatures', default=10)
args = parser.parse_args()
#READ in different formatting info
#ids
caseIdsFile = open(args.idsFile)
lines = caseIdsFile.readlines()
caseIds = set([i.strip(',').strip('\n').strip('\t') for i in lines]) #supports tsv, csv or newline delineated files
#ordering of signatures information
sigOrderingInfo = open('signatureOrdering.txt').readlines()[0].strip('\n')
sigOrderingDict = dict(zip([i for i in sigOrderingInfo.split(',')], [i for i in range(len(sigOrderingInfo.split(',')))]))
#load in the signatures information and add some utility columns
print 'loading in signatures information'
signaturesDf = pd.read_table(args.signature_data_file)
signaturesDf = signaturesDf[signaturesDf['Tumor_Sample_Barcode'].isin(caseIds)] #only include the ids we want
signaturesDf['pid'] = signaturesDf['Tumor_Sample_Barcode'].apply(lambda x: x[:9])
signaturesDf['tid'] = signaturesDf['Tumor_Sample_Barcode'].apply(lambda x: x[:13])
#see if the prefix is mean or signature
#rename columns as we need
signatureRenameDict = dict(zip(['mean_' + str(i) for i in range(1,31)], ['Signature.' + str(i) for i in range(1,31)]))
signaturesDf = signaturesDf.rename(columns= signatureRenameDict)
signaturesDf = merge_signature_columns(signaturesDf, mode='Stratton', prefix='Signature.')
signaturesDf = signaturesDf.rename(columns={'Signature.1': 'Signature.AGE',
'Signature.3': 'Signature.HRD',
'Signature.4': 'Signature.SMOKING',
'Signature.7': 'Signature.UV',
'Signature.10': 'Signature.POLE',
'Signature.11': 'Signature.TMZ',
'Signature.14': 'Signature.POLE_plus_MMR'}) #rename a second time to more human readable signature names
#create a column for the dominant signatures
signaturesDf['signatureOfInterestMagnitude'] = signaturesDf[args.primarySortSig]
signaturesDf['signatureOfInterestName'] = args.primarySortSig
signaturesDf['dominantSignature'] = signaturesDf.apply(lambda row: get_dominant_signature(row.to_dict(), prefix='Signature.'), axis=1) #get the dominant signature
#get the second most common signature
signaturesDf['secondPredominantSigName'] = signaturesDf.apply(lambda row: find_nth_biggest_non_primary_sig(row, args.primarySortSig, n=1, prefix='Signature.')[0], axis=1)
signaturesDf['secondPredominantSigMagnitude'] = signaturesDf.apply(lambda row: find_nth_biggest_non_primary_sig(row, args.primarySortSig, n=1, prefix='Signature.')[1], axis=1)
signaturesDf['secondPredominantSigName'] = signaturesDf['secondPredominantSigName'].apply(lambda x: x if x in sigOrderingDict.keys() else 'other')
#get the third most common signature
signaturesDf['thirdPredominantSigName'] = signaturesDf.apply(lambda row: find_nth_biggest_non_primary_sig(row, args.primarySortSig, n=2, prefix='Signature.')[0], axis=1)
signaturesDf['thirdPredominantSigMagnitude'] = signaturesDf.apply(lambda row: find_nth_biggest_non_primary_sig(row, args.primarySortSig, n=2, prefix='Signature.')[1], axis=1)
signaturesDf['thirdPredominantSigName'] = signaturesDf['thirdPredominantSigName'].apply(lambda x: x if x in sigOrderingDict.keys() else 'other')
#creates an "ordering value which R will use to line up the plot---lower means closer to the left of the screen"
signaturesDf['orderingVal'] = signaturesDf.apply(lambda row:
0 - row['signatureOfInterestMagnitude'] if row['dominantSignature'] == row['signatureOfInterestName']
else sigOrderingDict[row['dominantSignature']] - row['secondPredominantSigMagnitude'] if row['dominantSignature'] in sigOrderingDict
else 100 - row['secondPredominantSigMagnitude']
, axis=1)
#sigOrderingDict[row['dominantSignature']] if row['dominantSignature'] in sigOrderingDict else len(sigOrderingDict.keys()) + 1, axis = 1)
#FORMAT TO IGNORE the cases with not enough mutations
signaturesDf['orderingVal'] = signaturesDf.apply(lambda row: row['orderingVal'] if row['Nmut'] >= args.minMutThreshold else 1000 - row['Nmut'], axis=1)
signaturesDf['signatureOfInterestMagnitude'] = signaturesDf.apply(lambda row: row['signatureOfInterestMagnitude'] if row['Nmut'] >= args.minMutThreshold else None, axis=1)
signaturesDf['secondPredominantSigMagnitude'] = signaturesDf.apply(lambda row: row['secondPredominantSigMagnitude'] if row['Nmut'] >= args.minMutThreshold else None, axis=1)
signaturesDf['thirdPredominantSigMagnitude'] = signaturesDf.apply(lambda row: row['thirdPredominantSigMagnitude'] if row['Nmut'] >= args.minMutThreshold else None, axis=1)
writeFilePath = os.path.join(args.writeFileDir, args.writeFileName + '.csv')
print 'writing file to ', writeFilePath
signaturesDf.to_csv(writeFilePath, sep='\t', index=False)
if __name__ == '__main__':
main()