forked from Algo-Phantoms/Algo-Tree
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTopological_sort.java
112 lines (101 loc) · 3.3 KB
/
Topological_sort.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
/*
Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering
of vertices such that for every directed edge uv, vertex u comes before v in
the ordering. Topological Sorting for a graph is not possible if the graph is
not a DAG.
*/
import java.io.*;
import java.util.*;
public class Topological_sort {
public static void main(String[] args) throws IOException {
// Read InputStream for taking user input
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
//Number of testcases
int t = Integer.parseInt(reader.readLine());
while (t-- >0){
// Store the graph in a list of lists
ArrayList<ArrayList<Integer>> list = new ArrayList<>();
String[] st = reader.readLine().trim().split("\\s+");
//Number of edges
int E = Integer.parseInt(st[0]);
//Number of vertices
int V = Integer.parseInt(st[1]);
for (int i=0; i<V+1; i++){
list.add(i, new ArrayList<>());
}
// store V vertices with total E edges in between them
for (int i=1; i<=E; i++){
String[] s = reader.readLine().trim().split("\\s+");
int u = Integer.parseInt(s[0]);
int v = Integer.parseInt(s[1]);
list.get(u).add(v);
}
// Print Topological sorted array
printTopolologicalSortedArray(list, V);
}
}
private static void printTopolologicalSortedArray(ArrayList<ArrayList<Integer>> list, int v) {
int[] res = topologicalSort(list, v);
for (int e :
res) {
System.out.print(e+" ");
}
}
private static int[] topologicalSort(ArrayList<ArrayList<Integer>> list, int V) {
int[] res = new int[V];
Stack<Integer> stack = new Stack<>();
// Mark all the vertices as not visited
boolean[] visited = new boolean[V];
for (int i = 0; i < V; i++)
visited[i] = false;
// Call the recursive function to store
// Topological Sort starting from all vertices sequentially
for (int i = 0; i < V; i++)
if (!visited[i])
topologicalSortUtil(list,i, visited, stack);
int i=0;
while (!stack.empty()){
res[i]= stack.pop();
i++;
}
return res;
}
private static void topologicalSortUtil(ArrayList<ArrayList<Integer>> list, int v, boolean[] visited, Stack<Integer> stack) {
// Mark the current node as visited.
visited[v] = true;
Integer i;
// Recur for all the vertices adjacent to this vertex
for (Integer integer : list.get(v)) {
i = integer;
if (!visited[i])
topologicalSortUtil(list, i, visited, stack);
}
// Push current vertex to stack which stores result
stack.push(v);
}
}
/*
Test Case:
Input 1 :
6
5 2
5 0
4 0
4 1
2 3
3 1
Output 1 :
5 4 2 3 1 0
Input 2 :
6
4 2
5 1
4 0
3 1
1 3
3 2
Output 2 :
5 4 1 3 2 0
Time Complexity: O(V + E) – where V is the number of vertices and E is the number of edges.
Space Complexity: O(V) – where V is the number of vertices
*/