给定一个非负整数 num。对于 0 ≤ i ≤ num 范围中的每个数字 i ,计算其二进制数中的 1 的数目并将它们作为数组返回。
示例 1:
输入: 2
输出: [0,1,1]
示例 2:
输入: 5
输出: [0,1,1,2,1,2]
进阶:
- 给出时间复杂度为**O(n*sizeof(integer))的解答非常容易。但你可以在线性时间O(n)**内用一趟扫描做到吗?
- 要求算法的空间复杂度为O(n)。
- 你能进一步完善解法吗?要求在C++或任何其他语言中不使用任何内置函数(如 C++ 中的 __builtin_popcount)来执行此操作。
Dp: res[i] = res[ i & ( i - 1 )] +1
;
对于所有的数字,只有两类:
奇数:二进制表示中,奇数一定比前面那个偶数多一个 1,因为多的就是最低位的 1。 举例: 0 = 0 1 = 1 2 = 10 3 = 11 偶数:二进制表示中,偶数中 1 的个数一定和除以 2 之后的那个数一样多。因为最低位是 0,除以 2 就是右移一位,也就是把那个 0 抹掉而已,所以 1 的个数是不变的。 举例: 2 = 10 4 = 100 8 = 1000 3 = 11 6 = 110 12 = 1100 另外,0 的 1 个数为 0,于是就可以根据奇偶性开始遍历计算了。
var countBits = function(num) {
let res = [0];
for(let i = 1; i <= num; i ++) {
if (i % 2) {
res[i] = res[i-1] + 1
} else {
res[i] = res[i/2]
}
}
return res;
};
var countBits = function(num) {
let res = [0];
for(let i = 1; i <= num; i ++) {
res[i] = res[i & (i-1)] + 1
}
return res;
};
时间复杂度
空间复杂度