forked from wgrathwohl/JEM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtoy_data.py
208 lines (175 loc) · 6.89 KB
/
toy_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numpy as np
import sklearn
import sklearn.datasets
from sklearn.utils import shuffle as util_shuffle
import torch
import torch.distributions as tdist
# Dataset iterator
def inf_train_gen(data, rng=None, batch_size=200):
if rng is None:
rng = np.random.RandomState()
if data == "swissroll":
data = sklearn.datasets.make_swiss_roll(n_samples=batch_size, noise=1.0)[0]
data = data.astype("float32")[:, [0, 2]]
data /= 5
return data
elif data == "circles":
data = sklearn.datasets.make_circles(n_samples=batch_size, factor=.5, noise=0.08)[0]
data = data.astype("float32")
data *= 3
return data
elif data == "rings":
obs = batch_size
batch_size = batch_size * 20
n_samples4 = n_samples3 = n_samples2 = batch_size // 4
n_samples1 = batch_size - n_samples4 - n_samples3 - n_samples2
# so as not to have the first point = last point, we set endpoint=False
linspace4 = np.linspace(0, 2 * np.pi, n_samples4, endpoint=False)
linspace3 = np.linspace(0, 2 * np.pi, n_samples3, endpoint=False)
linspace2 = np.linspace(0, 2 * np.pi, n_samples2, endpoint=False)
linspace1 = np.linspace(0, 2 * np.pi, n_samples1, endpoint=False)
circ4_x = np.cos(linspace4)
circ4_y = np.sin(linspace4)
circ3_x = np.cos(linspace4) * 0.75
circ3_y = np.sin(linspace3) * 0.75
circ2_x = np.cos(linspace2) * 0.5
circ2_y = np.sin(linspace2) * 0.5
circ1_x = np.cos(linspace1) * 0.25
circ1_y = np.sin(linspace1) * 0.25
X = np.vstack([
np.hstack([circ4_x, circ3_x, circ2_x, circ1_x]),
np.hstack([circ4_y, circ3_y, circ2_y, circ1_y])
]).T * 3.0
X = util_shuffle(X, random_state=rng)
# Add noise
X = X + rng.normal(scale=0.08, size=X.shape)
inds = np.random.choice(list(range(batch_size)), obs)
X = X[inds]
return X.astype("float32")
elif data == "moons":
data = sklearn.datasets.make_moons(n_samples=batch_size, noise=0.1)[0]
data = data.astype("float32")
data = data * 2 + np.array([-1, -0.2])
return data
elif data == "8gaussians":
scale = 4.
centers = [(1, 0), (-1, 0), (0, 1), (0, -1), (1. / np.sqrt(2), 1. / np.sqrt(2)),
(1. / np.sqrt(2), -1. / np.sqrt(2)), (-1. / np.sqrt(2),
1. / np.sqrt(2)), (-1. / np.sqrt(2), -1. / np.sqrt(2))]
centers = [(scale * x, scale * y) for x, y in centers]
dataset = []
for i in range(batch_size):
point = rng.randn(2) * 0.5
idx = rng.randint(8)
center = centers[idx]
point[0] += center[0]
point[1] += center[1]
dataset.append(point)
dataset = np.array(dataset, dtype="float32")
dataset /= 1.414
return dataset
elif data == "pinwheel":
radial_std = 0.3
tangential_std = 0.1
num_classes = 5
num_per_class = batch_size // 5
rate = 0.25
rads = np.linspace(0, 2 * np.pi, num_classes, endpoint=False)
features = rng.randn(num_classes*num_per_class, 2) \
* np.array([radial_std, tangential_std])
features[:, 0] += 1.
labels = np.repeat(np.arange(num_classes), num_per_class)
angles = rads[labels] + rate * np.exp(features[:, 0])
rotations = np.stack([np.cos(angles), -np.sin(angles), np.sin(angles), np.cos(angles)])
rotations = np.reshape(rotations.T, (-1, 2, 2))
return 2 * rng.permutation(np.einsum("ti,tij->tj", features, rotations))
elif data == "2spirals":
n = np.sqrt(np.random.rand(batch_size // 2, 1)) * 540 * (2 * np.pi) / 360
d1x = -np.cos(n) * n + np.random.rand(batch_size // 2, 1) * 0.5
d1y = np.sin(n) * n + np.random.rand(batch_size // 2, 1) * 0.5
x = np.vstack((np.hstack((d1x, d1y)), np.hstack((-d1x, -d1y)))) / 3
x += np.random.randn(*x.shape) * 0.1
return x
elif data == "checkerboard":
x1 = np.random.rand(batch_size) * 4 - 2
x2_ = np.random.rand(batch_size) - np.random.randint(0, 2, batch_size) * 2
x2 = x2_ + (np.floor(x1) % 2)
return np.concatenate([x1[:, None], x2[:, None]], 1) * 2
elif data == "line":
x = rng.rand(batch_size) * 5 - 2.5
y = x
return np.stack((x, y), 1)
elif data == "cos":
x = rng.rand(batch_size) * 5 - 2.5
y = np.sin(x) * 2.5
return np.stack((x, y), 1)
else:
assert False
class Mixture:
def __init__(self, comps, pi):
self.pi = tdist.OneHotCategorical(probs=pi)
self.comps = comps
def sample(self, n):
c = self.pi.sample((n,))
xs = [comp.sample((n,)).unsqueeze(-1) for comp in self.comps]
xs = torch.cat(xs, -1)
x = (c[:, None, :] * xs).sum(-1)
return x
def logprob(self, x):
lpx = [comp.log_prob(x) for comp in self.comps]
lpx = [lp.view(lp.size(0), -1).sum(1).unsqueeze(-1) for lp in lpx]
lpx = torch.cat(lpx, -1).clamp(-20, 20)
logpxc = lpx + torch.log(self.pi.probs[None])
logpx = logpxc.logsumexp(1)
return logpx
def multi_dim_2d(data_list, rng=None, batch_size=200):
"""
Creates a mixture of datasets in 2D slices based on inf_train_gen
"""
samples = []
for data in data_list:
samples.append(inf_train_gen(data, rng, batch_size))
final_samples = np.concatenate(samples, axis=1)
return final_samples
def gaussian_grid_2d(size=2, std=.25):
comps = []
for i in range(size):
for j in range(size):
center = np.array([i, j])
center = torch.from_numpy(center).float()
comp = tdist.Normal(center, torch.ones((2,)) * std)
comps.append(comp)
pi = torch.ones((size**2,)) / (size**2)
mog = Mixture(comps, pi)
return mog
if __name__ == "__main__":
import visualize_flow
mog = gaussian_grid_2d(4)
# import matplotlib.pyplot as plt
x = mog.sample(1000)
# plt.scatter(x[:, 0].numpy(), x[:, 1].numpy())
# plt.savefig("/tmp/samp.jpg")
# # lp = mog.logprob(x)
# #visualize_flow.visualize_transform(logdensity=mog.logprob)
# # print(lp.size())
# # lp = lp.numpy()
# # plt.hist(lp)
# # plt.show()
# plt.figure(figsize=(9, 3))
# visualize_flow.visualize_transform(logdensity=mog.logprob, npts=800)
# fig_filename = "/tmp/fig.jpg"
# plt.savefig(fig_filename)
# plt.close()
# x = torch.randn(13, 2, requires_grad=True)
# l = mog.logprob(x)
# print(l.size())
# g = torch.autograd.grad(l.sum(), x)[0]
# print(g)
#
#datas = ["swissroll", "line", "moons"]
#names = []
#for name in datas:
# names.append(name)
# names.append(name)
#test_multidim = multi_dim_2d(datas)
#visualize_flow.visualize_slices(x, ["g", "g2"])