forked from CODEJIN/multi_speaker_tts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Feeder.py
233 lines (198 loc) · 11.7 KB
/
Feeder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import tensorflow as tf;
import numpy as np;
import _pickle as pickle;
from collections import deque;
from random import shuffle;
from threading import Thread;
import os, time, librosa, json;
import Hyper_Parameters as hp;
from Audio import melspectrogram
class Feeder:
def __init__(
self,
is_Training= False
):
self.is_Training = is_Training;
self.Placeholder_Generate();
self.Metadata_Load();
if self.is_Training:
if hp.Train.Use_Pre_in_Main_Train:
self.pre_Pattern_Queue = deque();
pre_Pattern_Generate_Thread = Thread(target=self.Train_Pattern_Generate, args=[True]);
pre_Pattern_Generate_Thread.daemon = True;
pre_Pattern_Generate_Thread.start();
self.pattern_Queue = deque();
pattern_Generate_Thread = Thread(target=self.Train_Pattern_Generate, args=[False]);
pattern_Generate_Thread.daemon = True;
pattern_Generate_Thread.start();
def Placeholder_Generate(self):
self.placeholder_Dict = {};
with tf.variable_scope('placeholders') as scope:
self.placeholder_Dict["Is_Training"] = tf.placeholder(tf.bool, name="is_training_placeholder"); #boolean
self.placeholder_Dict["Token"] = tf.placeholder(tf.int32, shape=(None, None, ), name="token_placeholder"); #Shape: [batch_Size, spectrogram_Length, mel_Spectogram_Dimension];
self.placeholder_Dict["Token_Length"] = tf.placeholder(tf.int32, shape=(None,), name="token_length_placeholder"); #[batch_Size];
self.placeholder_Dict["Mel"] = tf.placeholder(tf.float32, shape=(None, None, hp.Sound.Mel_Dim), name="mel_placeholder"); #Shape: [batch_Size, spectrogram_Length, mel_Spectogram_Dimension];
self.placeholder_Dict["Mel_Length"] = tf.placeholder(tf.int32, shape=(None,), name="mel_length_placeholder"); #[batch_Size];
self.placeholder_Dict['Speaker_Embedding_Mel'] = tf.placeholder(tf.float32, shape=(None, None, hp.Sound.Mel_Dim), name='speaker_embedding_mel_placeholder'); #Shape: [batch_Size, spectrogram_Length, mel_Spectogram_Dimension];
def Metadata_Load(self):
if self.is_Training:
with open(os.path.join(hp.Train.Pattern_Path, hp.Train.Metadata_File.upper()).replace("\\", "/"), 'rb') as f:
self.metadata_Dict = pickle.load(f)
if not all([
len(self.metadata_Dict['Token_Index_Dict']) == hp.Encoder.Embedding.Token_Size,
self.metadata_Dict['Spectrogram_Dim'] == hp.Sound.Spectrogram_Dim,
self.metadata_Dict['Mel_Dim'] == hp.Sound.Mel_Dim,
self.metadata_Dict['Frame_Shift'] == hp.Sound.Frame_Shift,
self.metadata_Dict['Frame_Length'] == hp.Sound.Frame_Length,
self.metadata_Dict['Sample_Rate'] == hp.Sound.Sample_Rate,
]):
raise ValueError('The metadata information and hyper parameter setting are not consistent.')
else:
with open('Token_Index_Dict.json', 'r') as f:
self.metadata_Dict = {'Token_Index_Dict': json.load(f)}
def Speaker_Embedding_Mel(self, mel_List):
required_Mel_Length = \
hp.Speaker_Embedding.Inference.Sample_Nums * (hp.Speaker_Embedding.Inference.Mel_Frame - hp.Speaker_Embedding.Inference.Overlap_Frame) + \
hp.Speaker_Embedding.Inference.Overlap_Frame
new_Mel_Pattern = np.zeros(
(
len(mel_List),
hp.Speaker_Embedding.Inference.Sample_Nums,
hp.Speaker_Embedding.Inference.Mel_Frame,
hp.Sound.Mel_Dim
),
dtype=np.float32
)
for index, mel in enumerate(mel_List):
if mel.shape[0] < required_Mel_Length:
#All sample is same because the mel length is too short.
sample_Mel = mel[:hp.Speaker_Embedding.Inference.Mel_Frame]
new_Mel_Pattern[index, :, :sample_Mel.shape[0]] = sample_Mel
else:
for sample_Index in range(hp.Speaker_Embedding.Inference.Sample_Nums):
start_Point = int((mel.shape[0] - required_Mel_Length) / 2) + sample_Index * hp.Speaker_Embedding.Inference.Overlap_Frame #Middle of mel
new_Mel_Pattern[index, sample_Index] = mel[start_Point:start_Point + hp.Speaker_Embedding.Inference.Mel_Frame]
return np.reshape(new_Mel_Pattern, (-1, hp.Speaker_Embedding.Inference.Mel_Frame, hp.Sound.Mel_Dim))
def Train_Pattern_Generate(self, is_Pre_Train = False):
if is_Pre_Train:
file_List = [path for path in self.metadata_Dict['File_List'] if self.metadata_Dict['Dataset_Dict'][path] in hp.Train.Pre_Train_Dataset_List]
pattern_Queue = self.pre_Pattern_Queue
else:
file_List = [path for path in self.metadata_Dict['File_List'] if self.metadata_Dict['Dataset_Dict'][path] in hp.Train.Main_Train_Dataset_List]
pattern_Queue = self.pattern_Queue
min_Mel_Length = hp.Train.Use_Wav_Length_Range[0] / hp.Sound.Frame_Shift
max_Mel_Length = hp.Train.Use_Wav_Length_Range[1] / hp.Sound.Frame_Shift
path_List = [
(path, self.metadata_Dict['Mel_Length_Dict'][path])
for path in file_List
if self.metadata_Dict['Mel_Length_Dict'][path] >= min_Mel_Length and self.metadata_Dict['Mel_Length_Dict'][path] <= max_Mel_Length
]
print(
'Pre train pattern info' if is_Pre_Train else 'Main train pattern info', '\n',
'Total pattern count: {}'.format(len(self.metadata_Dict['Mel_Length_Dict'])), '\n',
'Use pattern count: {}'.format(len(path_List)), '\n',
'Excluded pattern count: {}'.format(len(self.metadata_Dict['Mel_Length_Dict']) - len(path_List))
)
if hp.Train.Pattern_Sorting_by_Mel_Length:
path_List = [file_Name for file_Name, _ in sorted(path_List, key=lambda x: x[1])]
else:
path_List = [file_Name for file_Name, _ in path_List]
while True:
if not hp.Train.Pattern_Sorting_by_Mel_Length:
shuffle(path_List)
path_Batch_List = [
path_List[x:x + hp.Train.Batch_Size]
for x in range(0, len(path_List), hp.Train.Batch_Size)
]
shuffle(path_Batch_List)
#path_Batch_List = path_Batch_List[0:2] + list(reversed(path_Batch_List)) #Batch size의 적절성을 위한 코드. 10회 이상 되면 문제 없음
batch_Index = 0;
while batch_Index < len(path_Batch_List):
if len(pattern_Queue) >= hp.Train.Max_Pattern_Queue:
time.sleep(0.1);
continue;
pattern_Count = len(path_Batch_List[batch_Index]);
token_List = []
mel_List = []
for file_Path in path_Batch_List[batch_Index]:
with open(os.path.join(hp.Train.Pattern_Path, file_Path).replace("\\", "/"), "rb") as f:
pattern_Dict = pickle.load(f);
token_List.append(np.hstack([
self.metadata_Dict['Token_Index_Dict']['<S>'],
pattern_Dict['Token'],
self.metadata_Dict['Token_Index_Dict']['<E>']
]))
mel_List.append(pattern_Dict['Mel'])
max_Token_Length = max([token.shape[0] for token in token_List])
max_Mel_Length = max([mel.shape[0] for mel in mel_List])
new_Token_Pattern = np.zeros(
shape=(pattern_Count, max_Token_Length),
dtype= np.int32
)
new_Token_Pattern += self.metadata_Dict['Token_Index_Dict']['<E>'] #I think this is useless...
new_Mel_Pattern = np.zeros(
shape=(pattern_Count, max_Mel_Length, hp.Sound.Mel_Dim),
dtype= np.float32
)
for pattern_Index, (token, mel) in enumerate(zip(token_List, mel_List)):
new_Token_Pattern[pattern_Index, :token.shape[0]] = token;
new_Mel_Pattern[pattern_Index, :mel.shape[0]] = mel;
pattern_Queue.append({
self.placeholder_Dict["Is_Training"]: True,
self.placeholder_Dict["Token"]: new_Token_Pattern,
self.placeholder_Dict["Token_Length"]: np.array([token.shape[0] for token in token_List]).astype(np.int32),
self.placeholder_Dict["Mel"]: new_Mel_Pattern,
self.placeholder_Dict["Mel_Length"]: np.array([mel.shape[0] for mel in mel_List]).astype(np.int32),
self.placeholder_Dict['Speaker_Embedding_Mel']: self.Speaker_Embedding_Mel(mel_List),
})
batch_Index += 1;
def Get_Train_Pattern(self, is_Pre_Train = False):
if is_Pre_Train:
pattern_Queue = self.pre_Pattern_Queue
else:
pattern_Queue = self.pattern_Queue
while len(pattern_Queue) == 0: #When training speed is faster than making pattern, model should be wait.
time.sleep(0.01);
return pattern_Queue.popleft();
def Get_Inference_Pattern(self, speaker_Wav_Path_List, text_List):
pattern_Count = len(text_List)
token_List = [
np.array(
[self.metadata_Dict['Token_Index_Dict']['<S>']] +
[self.metadata_Dict['Token_Index_Dict'][letter] for letter in text.upper()] +
[self.metadata_Dict['Token_Index_Dict']['<E>']]
).astype(np.int32)
for text in text_List
]
max_Token_Length = max([token.shape[0] for token in token_List])
new_Token_Pattern = np.zeros(
shape=(pattern_Count, max_Token_Length),
dtype= np.int32
)
new_Token_Pattern += self.metadata_Dict['Token_Index_Dict']['<E>'] #I think this is useless...
new_Mel_Pattern = np.zeros(
shape=(pattern_Count, 1, hp.Sound.Mel_Dim),
dtype= np.float32
)
for pattern_Index, token in enumerate(token_List):
new_Token_Pattern[pattern_Index, :token.shape[0]] = token;
speaker_Embedding_Mel_List = [
np.transpose(melspectrogram(
y= librosa.effects.trim(librosa.core.load(path, sr = hp.Sound.Sample_Rate)[0], top_db=15, frame_length=32, hop_length=16)[0] * 0.99,
num_freq= hp.Sound.Spectrogram_Dim,
frame_shift_ms= hp.Sound.Frame_Shift,
frame_length_ms= hp.Sound.Frame_Length,
num_mels= hp.Sound.Mel_Dim,
sample_rate= hp.Sound.Sample_Rate,
max_abs_value= hp.Sound.Max_Abs_Mel
).astype(np.float32))
for path in speaker_Wav_Path_List
]
return {
self.placeholder_Dict["Is_Training"]: False,
self.placeholder_Dict["Token"]: new_Token_Pattern,
self.placeholder_Dict["Token_Length"]: np.array([token.shape[0] for token in token_List]).astype(np.int32),
self.placeholder_Dict["Mel"]: new_Mel_Pattern,
self.placeholder_Dict["Mel_Length"]: np.array([0 for _ in text_List]).astype(np.int32),
self.placeholder_Dict['Speaker_Embedding_Mel']: self.Speaker_Embedding_Mel(speaker_Embedding_Mel_List),
}