forked from CODEJIN/multi_speaker_tts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMSTTS_SV.py
506 lines (444 loc) · 24.5 KB
/
MSTTS_SV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import sys, os, librosa, time;
import tensorflow as tf;
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import logging
logging.getLogger('tensorflow').disabled = True
import numpy as np;
import _pickle as pickle;
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt;
from threading import Thread;
from Location_Sensitive_Attention import Location_Sensitive_Attention
import Modules, Feeder;
import Hyper_Parameters as hp;
#import Tacotron1_Modules;
from Taco1_Mel_to_Spect import Modules as Tacotron1_Modules
from WaveGlow import Modules as WaveGlow_Modules
from Speaker_Embedding import Modules as Speaker_Embedding_Modules
class Tacotron2:
def __init__(self, is_Training= False):
self.is_Training = is_Training
self.tf_Session = tf.Session();
self.feeder = Feeder.Feeder(is_Training= is_Training);
self.Tensor_Generate();
self.tf_Saver = tf.train.Saver(
var_list= [
v for v in tf.all_variables()
if not (
v.name.startswith('speaker_embedding') or
v.name.startswith('mel_to_spectrogram') or
v.name.startswith('waveglow')
)
],
max_to_keep= 5,
);
self.Speaker_Embedding_Load()
self.Vocoder_Load()
def Tensor_Generate(self):
placeholder_Dict = self.feeder.placeholder_Dict;
global_Step = tf.train.get_or_create_global_step()
with tf.variable_scope('speaker_embedding'):
embeeding_Tensor = Speaker_Embedding_Modules.Restructure(placeholder_Dict['Speaker_Embedding_Mel']);
embeeding_Tensor = Speaker_Embedding_Modules.Stack_LSTM(
inputs= embeeding_Tensor,
lengths= tf.zeros(tf.shape(embeeding_Tensor)[0:1]) + hp.Speaker_Embedding.Inference.Mel_Frame,
is_training= placeholder_Dict['Is_Training']
)
embeeding_Tensor = Speaker_Embedding_Modules.Inference(embeeding_Tensor) #[Batch, Speaker_Embedding_Size]
with tf.variable_scope('encoder'):
encoder_Tensor = Modules.Encoder_Embedding(placeholder_Dict['Token']);
encoder_Tensor = Modules.Encoder_Conv(
inputs= encoder_Tensor,
is_training= placeholder_Dict['Is_Training']
)
encoder_Tensor = Modules.Encoder_BiLSTM(
inputs= encoder_Tensor,
lengths= placeholder_Dict['Token_Length'],
is_training= placeholder_Dict['Is_Training']
)
embeeding_Tensor = tf.tile(tf.expand_dims(embeeding_Tensor, axis= 1), multiples= [1, tf.shape(encoder_Tensor)[1], 1]); #[Batch, Time, Speaker_Embedding_Size]
encoder_Tensor = tf.concat([encoder_Tensor, embeeding_Tensor], axis= -1) #[Batch, Time, Cell_Size * 2 + Speaker_Embedding_Size]
with tf.variable_scope('attention'):
attention_Mechanism = Location_Sensitive_Attention(
num_units= hp.Attention.Memory_Size,
memory= encoder_Tensor,
memory_length= placeholder_Dict['Token_Length'],
conv_kernel_size= hp.Attention.Conv.Kernel_Size,
conv_stride_size= hp.Attention.Conv.Stride,
conv_channel= hp.Attention.Conv.Channel,
dropout_rate= hp.Attention.Conv.Dropout_Rate,
is_training= placeholder_Dict['Is_Training'],
)
with tf.variable_scope('decoder'):
final_Outputs, final_State = Modules.Decoder_LSTM(
inputs= placeholder_Dict['Mel'],
sequence_length= placeholder_Dict['Mel_Length'],
attention_mechanism= attention_Mechanism,
is_training= placeholder_Dict['Is_Training']
)
postnet_Tensor = Modules.Decoder_Conv(
inputs= final_Outputs.linear,
is_training= placeholder_Dict['Is_Training']
)
postnet_Tensor = final_Outputs.linear + postnet_Tensor
attention_History = tf.transpose(final_State.alignment_history.stack(), perm=[1,2,0])
if hp.Use_Vocoder.upper() == 'Taco1_Mel_to_Spect'.upper():
with tf.variable_scope('mel_to_spectrogram'):
spectrogram_Tensor = Tacotron1_Modules.ConvBank(
inputs= postnet_Tensor,
is_training= placeholder_Dict['Is_Training']
)
spectrogram_Tensor = Tacotron1_Modules.Highway(
inputs= spectrogram_Tensor
)
spectrogram_Tensor = Tacotron1_Modules.BiRNN(
inputs= spectrogram_Tensor,
is_training= placeholder_Dict['Is_Training']
)
spectrogram_Tensor = Tacotron1_Modules.Projection(
inputs= spectrogram_Tensor
)
elif hp.Use_Vocoder.upper() == 'WaveGlow'.upper():
#입력된 text에서 바로 wav까지 처리하고자 한다면 'placeholder_Dict['Mel']'을 'WaveGlow_Modules.Reshaped_Mel(postnet_Tensor)'로 변경하면 됩니다. 하지만 메모리문제로 본 코드는 이 부분은 따로 처리합니다.
#If you want to process from input text directly to wav, you can change 'placeholder_Dict['Mel']' to 'WaveGlow_Modules.Reshaped_Mel(postnet_Tensor)'. However, due to memory issues, this code handles this part separately.
with tf.variable_scope('waveglow') as scope:
waveglow_Audio_Tensor, waveglow_Mel_Tensor = WaveGlow_Modules.Restructure_Inference_Data(
mels= placeholder_Dict["Mel"] #WaveGlow_Modules.Reshaped_Mel(postnet_Tensor)
)
waveglow_Audio_Tensor = WaveGlow_Modules.Glow_Inference(waveglow_Audio_Tensor, waveglow_Mel_Tensor)
if self.is_Training:
with tf.variable_scope('loss'):
stop_Target_Tensor = tf.cast(
x= tf.logical_not(tf.sequence_mask(
placeholder_Dict['Mel_Length'],
maxlen = tf.reduce_max(placeholder_Dict['Mel_Length']) + 1
)),
dtype= tf.float32
) #Stop은 마지막을 봐야되니까....
#linear와 postnet은 마지막이 영향을 줄 의미가 없어서....
linear_Loss = tf.losses.mean_squared_error(final_Outputs.linear[:, :-1], placeholder_Dict['Mel'])
postnet_Loss = tf.losses.mean_squared_error(postnet_Tensor[:, :-1], placeholder_Dict['Mel'])
if hp.Train.Use_L1_Loss:
linear_Loss += tf.losses.absolute_difference(final_Outputs.linear[:, :-1], placeholder_Dict['Mel'])
postnet_Loss += tf.losses.absolute_difference(postnet_Tensor[:, :-1], placeholder_Dict['Mel'])
stop_Loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=stop_Target_Tensor, logits=tf.squeeze(final_Outputs.stop, axis=2)))
weight_Regularization_Loss = hp.Train.Weight_Regularization_Rate * tf.reduce_sum([
tf.nn.l2_loss(variable)
for variable in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
if not (
'bias' in variable.name.lower() or
'embedding' in variable.name.lower() or
'lstm' in variable.name.lower() or
'rnn' in variable.name.lower() or
'weight_w' in variable.name.lower() or
'projection' in variable.name.lower() or
variable.name.startswith('speaker_embedding') or
variable.name.startswith('mel_to_spectrogram') or
variable.name.startswith('waveglow')
)
])
loss_Tensor = tf.reduce_sum([linear_Loss, postnet_Loss, stop_Loss, weight_Regularization_Loss]);
learning_Rate = tf.train.exponential_decay(
learning_rate= hp.Train.Learning_Rate.Initial,
global_step= global_Step - hp.Train.Learning_Rate.Decay_Start_Step,
decay_steps= hp.Train.Learning_Rate.Decay_Step,
decay_rate= hp.Train.Learning_Rate.Decay_Rate,
)
learning_Rate = tf.minimum(tf.maximum(learning_Rate, hp.Train.Learning_Rate.Min), hp.Train.Learning_Rate.Initial)
optimizer = tf.train.AdamOptimizer(
learning_rate= learning_Rate,
beta1= hp.Train.ADAM.Beta1,
beta2= hp.Train.ADAM.Beta2,
epsilon= hp.Train.ADAM.Epsilon,
)
train_Op = tf.group([
tf.get_collection(tf.GraphKeys.UPDATE_OPS),
optimizer.minimize(
loss_Tensor,
global_step= global_Step,
var_list= [
v for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
if not (
v.name.startswith('speaker_embedding') or
v.name.startswith('mel_to_spectrogram') or
v.name.startswith('waveglow')
)
]
)
])
self.train_Tensor_Dict = {
'Global_Step': global_Step,
'Learning_Rate': learning_Rate,
'Loss': loss_Tensor,
'Linear_Loss': linear_Loss,
'Postnet_Loss': postnet_Loss,
'Stop_Loss': stop_Loss,
'Weight_Regularization_Loss': weight_Regularization_Loss,
'Train_OP': train_Op,
}
self.inference_Tensor_Dict = {
'Global_Step': global_Step,
'Linear': final_Outputs.linear,
'Mel': postnet_Tensor,
'Stop': tf.sigmoid(tf.squeeze(final_Outputs.stop, axis=2)),
'Attention_History': attention_History
}
if hp.Use_Vocoder.upper() == 'Taco1_Mel_to_Spect'.upper():
self.inference_Tensor_Dict.update({
'Spectrogram': spectrogram_Tensor
})
elif hp.Use_Vocoder.upper() == 'WaveGlow'.upper():
self.wav_Tensor = waveglow_Audio_Tensor
self.tf_Session.run(tf.global_variables_initializer());
def Speaker_Embedding_Load(self):
speaker_Embedding_Saver = tf.train.Saver(var_list= [v for v in tf.all_variables() if v.name.startswith('speaker_embedding')])
latest_Checkpoint = tf.train.latest_checkpoint(hp.Speaker_Embedding.Checkpoint_Path)
if latest_Checkpoint is None:
raise ValueError('There is no speaker embedding checkpoint!')
speaker_Embedding_Saver.restore(self.tf_Session, latest_Checkpoint);
print('Speaker embedding checkpoint \'{}\' is loaded.'.format(latest_Checkpoint));
def Vocoder_Load(self):
if hp.Use_Vocoder.upper() == 'Taco1_Mel_to_Spect'.upper():
Vocoder_Saver = tf.train.Saver(var_list= [v for v in tf.all_variables() if v.name.startswith('mel_to_spectrogram')])
latest_Checkpoint = tf.train.latest_checkpoint(hp.Taco1_Mel_to_Spect.Checkpoint_Path)
elif hp.Use_Vocoder.upper() == 'WaveGlow'.upper():
Vocoder_Saver = tf.train.Saver(var_list= [v for v in tf.all_variables() if v.name.startswith('waveglow')])
latest_Checkpoint = tf.train.latest_checkpoint(hp.WaveGlow.Checkpoint_Path)
if latest_Checkpoint is None:
raise ValueError('There is no vocoder checkpoint!')
Vocoder_Saver.restore(self.tf_Session, latest_Checkpoint);
print('Vocoder checkpoint \'{}\' is loaded.'.format(latest_Checkpoint));
def Restore(self):
latest_Checkpoint = tf.train.latest_checkpoint(hp.Checkpoint_Path);
if latest_Checkpoint is None:
print('There is no checkpoint.');
return;
self.tf_Saver.restore(self.tf_Session, latest_Checkpoint);
print('Checkpoint \'{}\' is loaded.'.format(latest_Checkpoint));
def Train(self):
def Run_Inference():
speaker_Wav_Path_List = []
sentence_List = []
with open('Inference_Sentence_in_Train.txt', 'r') as f:
for line in f.readlines():
embedding_Path, sentence = line.strip().split('\t');
speaker_Wav_Path_List.append(embedding_Path)
sentence_List.append(sentence)
self.Inference(speaker_Wav_Path_List, sentence_List)
Run_Inference();
current_Global_Step = self.tf_Session.run(tf.train.get_or_create_global_step())
while True:
start_Time = time.time();
result_Dict = self.tf_Session.run(
fetches= self.train_Tensor_Dict,
feed_dict= self.feeder.Get_Train_Pattern(is_Pre_Train= (hp.Train.Use_Pre_in_Main_Train and current_Global_Step < hp.Train.Pre_Step))
)
display_List = [
'Time: {:0.3f}'.format(time.time() - start_Time),
'Global step: {}'.format(result_Dict['Global_Step']),
'Mode: {}'.format('Pre-train' if current_Global_Step < hp.Train.Pre_Step else 'Main'),
'Learning rate: {:0.5f}'.format(result_Dict['Learning_Rate']),
'Linear loss: {:0.5f}'.format(result_Dict['Linear_Loss']),
'Postnet loss: {:0.5f}'.format(result_Dict['Postnet_Loss']),
'Stop loss: {:0.5f}'.format(result_Dict['Stop_Loss']),
'WR loss: {:0.5f}'.format(result_Dict['Weight_Regularization_Loss']),
]
print('\t\t'.join(display_List))
if (result_Dict['Global_Step'] + 1) % hp.Train.Checkpoint_Save_Timing == 0:
os.makedirs(os.path.join(hp.Checkpoint_Path).replace("\\", "/"), exist_ok= True);
self.tf_Saver.save(self.tf_Session, os.path.join(hp.Checkpoint_Path, 'CHECKPOINT').replace('\\', '/'), global_step= result_Dict['Global_Step'] + 1);
if (result_Dict['Global_Step'] + 1) % hp.Train.Inference_Timing == 0:
Run_Inference();
current_Global_Step = result_Dict['Global_Step']
def Inference(self, path_List, text_List, file_Prefix= None):
if hp.Use_Vocoder.upper() == 'Taco1_Mel_to_Spect'.upper():
self.Inference_Mel_to_Spectrogram(path_List, text_List, file_Prefix)
elif hp.Use_Vocoder.upper() == 'WaveGlow'.upper():
self.Inference_WaveGlow(path_List, text_List, file_Prefix)
def Inference_Mel_to_Spectrogram(self, path_List, text_List, file_Prefix= None):
os.makedirs(os.path.join(hp.Inference_Path, 'WAV').replace("\\", "/"), exist_ok= True);
os.makedirs(os.path.join(hp.Inference_Path, 'PLOT').replace("\\", "/"), exist_ok= True);
result_Dict = self.tf_Session.run(
fetches= self.inference_Tensor_Dict,
feed_dict= self.feeder.Get_Inference_Pattern(path_List, text_List)
)
export_Inference_Thread = Thread(
target= self.Export_Inference_Mel_to_Spectrogram,
args= [
text_List,
list(result_Dict['Linear']),
list(result_Dict['Mel']),
list(result_Dict['Spectrogram']),
list(result_Dict['Attention_History']),
list(result_Dict['Stop']),
file_Prefix or 'GS_{}'.format(result_Dict['Global_Step'])
]
)
export_Inference_Thread.daemon = True;
export_Inference_Thread.start();
def Inference_WaveGlow(self, path_List, text_List, file_Prefix= None):
os.makedirs(os.path.join(hp.Inference_Path, 'WAV').replace("\\", "/"), exist_ok= True);
os.makedirs(os.path.join(hp.Inference_Path, 'PLOT').replace("\\", "/"), exist_ok= True);
result_Dict = self.tf_Session.run(
fetches= self.inference_Tensor_Dict,
feed_dict= self.feeder.Get_Inference_Pattern(path_List, text_List)
)
mel_List = []
mel_Index_List = []
for mel in result_Dict['Mel']:
split_Mel_List = [
mel[x:x+hp.WaveGlow.Inference.Mel_Split_Length]
for x in range(0, mel.shape[0], hp.WaveGlow.Inference.Mel_Split_Length)
]
mel_List.extend(split_Mel_List)
start_Index = 0 if len(mel_Index_List) == 0 else mel_Index_List[-1][1]
mel_Index_List.append((start_Index, start_Index + len(split_Mel_List)))
pattern_Count = len(mel_List)
max_Mel_Length = max([mel.shape[0] for mel in mel_List])
new_Mel_Pattern = np.zeros(
shape=(pattern_Count, max_Mel_Length, hp.Sound.Mel_Dim),
dtype= np.float32
)
for pattern_Index, mel in enumerate(mel_List):
new_Mel_Pattern[pattern_Index, :mel.shape[0]] = mel;
wav_List = []
for batch_Start_Index in range(0, pattern_Count, hp.WaveGlow.Inference.Batch_Size):
wav_List.append(self.tf_Session.run(
self.wav_Tensor,
{self.feeder.placeholder_Dict['Mel']: new_Mel_Pattern[batch_Start_Index:batch_Start_Index + hp.WaveGlow.Inference.Batch_Size]}
))
result_Wav = np.zeros(
shape= [
sum([wav.shape[0] for wav in wav_List]),
max([wav.shape[1] for wav in wav_List])
],
dtype= np.float32
)
current_Index = 0;
for wav in wav_List:
result_Wav[current_Index:current_Index + wav.shape[0], :wav.shape[1]] = wav
current_Index += wav.shape[0]
result_Dict['Wav'] = [np.reshape(result_Wav[start_Index:end_Index], [-1]) for start_Index, end_Index in mel_Index_List]
export_Inference_Thread = Thread(
target= self.Export_Inference_WaveGlow,
args= [
text_List,
list(result_Dict['Linear']),
list(result_Dict['Mel']),
list(result_Dict['Attention_History']),
list(result_Dict['Stop']),
list(result_Dict['Wav']),
file_Prefix or 'GS_{}'.format(result_Dict['Global_Step'])
]
)
export_Inference_Thread.daemon = True;
export_Inference_Thread.start();
def Export_Inference_Mel_to_Spectrogram(self, text_List, linear_List, mel_List, spectrogram_List, attention_History_List, stop_List, file_Prefix='Inference'):
for index, (text, linear, mel, spectrogram, attention_History, stop) in enumerate(zip(text_List, linear_List, mel_List, spectrogram_List, attention_History_List, stop_List)):
file_Name = '{}.IDX_{}'.format(file_Prefix, index)
slice_Index = np.argmax(stop > 0.5) if any(stop > 0.5) else stop.shape[0]
linear = linear[:slice_Index]
mel = mel[:slice_Index]
stop = stop[:slice_Index]
attention_History = attention_History[:len(text) + 2, :slice_Index]
spectrogram = spectrogram[:slice_Index]
if spectrogram.shape[0] == 1:
print('WAV \'{}\' exporting failed. The exported spectrogram is too short.'.format(file_Name))
else:
try:
wav = Tacotron1_Modules.Griffin_Lim(spectrogram)
librosa.output.write_wav(
path= os.path.join(hp.Inference_Path, 'WAV', '{}.WAV'.format(file_Name)).replace("\\", "/"),
y= wav,
sr=hp.Sound.Sample_Rate
)
except Exception as e:
print('Wav exporting failed: {}'.format(e))
new_Figure = plt.figure(figsize=(16, 24), dpi=100);
plt.subplot(5,1,1);
plt.imshow(np.transpose(linear), aspect='auto', origin='lower')
plt.title('Text: {} Linear'.format(text))
plt.colorbar()
plt.subplot(5,1,2);
plt.imshow(np.transpose(mel), aspect='auto', origin='lower')
plt.title('Text: {} Mel(Postnet)'.format(text))
plt.colorbar()
plt.subplot(5,1,3);
plt.imshow(np.transpose(spectrogram), aspect='auto', origin='lower')
plt.title('Text: {} Spectrogram'.format(text))
plt.colorbar()
plt.subplot(5,1,4);
plt.imshow(np.transpose(attention_History), aspect='auto', origin='lower')
plt.title('Text: {} Attention history'.format(text))
plt.xticks(
range(attention_History.shape[0]),
['<S>'] + list(text) + ['<E>'],
fontsize = 10
)
plt.colorbar()
plt.subplot(5,1,5);
plt.plot(stop)
plt.title('Text: {} Stop flow'.format(text))
plt.xlim(0, stop.shape[0])
plt.colorbar()
plt.tight_layout()
plt.savefig(
os.path.join(hp.Inference_Path, 'PLOT', '{}.PNG'.format(file_Name)).replace("\\", "/"),
#bbox_inches='tight'
)
plt.close(new_Figure);
def Export_Inference_WaveGlow(self, text_List, linear_List, mel_List, attention_History_List, stop_List, wav_List, file_Prefix='Inference'):
for index, (text, linear, mel, wav, attention_History, stop) in enumerate(zip(text_List, linear_List, mel_List, wav_List, attention_History_List, stop_List)):
file_Name = '{}.IDX_{}'.format(file_Prefix, index)
slice_Index = np.argmax(stop > 0.5) if any(stop > 0.5) else stop.shape[0]
linear = linear[:slice_Index]
mel = mel[:slice_Index]
stop = stop[:slice_Index]
attention_History = attention_History[:len(text) + 2, :slice_Index]
wav = wav[:int(slice_Index * hp.Sound.Frame_Shift / 1000 * hp.WaveGlow.Export_Sample_Rate)]
try:
librosa.output.write_wav(
path= os.path.join(hp.Inference_Path, 'WAV', '{}.WAV'.format(file_Name)).replace("\\", "/"),
y= wav,
sr=hp.WaveGlow.Export_Sample_Rate
)
except Exception as e:
print('Wav exporting failed: {}'.format(e))
new_Figure = plt.figure(figsize=(16, 24), dpi=100);
plt.subplot(5,1,1);
plt.imshow(np.transpose(linear), aspect='auto', origin='lower')
plt.title('Text: {} Linear'.format(text))
plt.colorbar()
plt.subplot(5,1,2);
plt.imshow(np.transpose(mel), aspect='auto', origin='lower')
plt.title('Text: {} Mel(Postnet)'.format(text))
plt.colorbar()
plt.subplot(5,1,3);
plt.imshow(np.transpose(attention_History), aspect='auto', origin='lower')
plt.title('Text: {} Attention history'.format(text))
plt.xticks(
range(attention_History.shape[0]),
['<S>'] + list(text) + ['<E>'],
fontsize = 10
)
plt.colorbar()
plt.subplot(5,1,4);
plt.plot(stop)
plt.title('Text: {} Stop flow'.format(text))
plt.xlim(0, stop.shape[0])
plt.colorbar()
plt.subplot(5,1,5);
plt.plot(wav)
plt.title('Text: {} Wav'.format(text))
plt.colorbar()
plt.tight_layout()
plt.savefig(
os.path.join(hp.Inference_Path, 'PLOT', '{}.PNG'.format(file_Name)).replace("\\", "/"),
#bbox_inches='tight'
)
plt.close(new_Figure);
if __name__ == '__main__':
new_Tacotron2 = Tacotron2(is_Training= True)
new_Tacotron2.Restore()
new_Tacotron2.Train()