-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsi_normalmap.h
1086 lines (948 loc) · 38.5 KB
/
si_normalmap.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* LICENSE AT END OF FILE */
/***************************************************************************
* Sir Irk's normal map generator
*
* Basic use:
* #define SI_NORMALMAP_IMPLEMENTATION before including this file to get
the implementation. Otherwise this acts as a regualr header file
* uint32_t *in = ...load pixels from image
* uint32_t *nm = sinm_normal_map(in, w, h, scale, blurRadius, greyscaleType);
* ...write normal map to a file
*
* Other defines you can use(before including this file):
* #define SI_NORMALMAP_STATIC for static defintions(no extern functions)
* #define SI_NORMALMAP_GPU to enable opengl gpu usage. Requires an opengl
* context.
***************************************************************************/
#include <assert.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#ifndef SINM_DEF
#ifdef SI_NORMALMAP_STATIC
#define SINM_DEF static
#else
#define SINM_DEF extern
#endif
#endif
#ifndef _MSC_VER
#ifdef __cplusplus
#define sinm__inline inline
#else
#define sinm__inline
#endif
#else
#define sinm__inline __forceinline
#endif
#ifdef _MSC_VER
#define sinm__aligned_var(type, bytes) __declspec(align(bytes)) type
#else
#define sinm__aligned_var(type, bytes) type __attribute__((aligned(bytes)))
#endif
#ifndef SINM_TYPES
#define SINM_TYPES
typedef enum {
sinm_greyscale_none,
sinm_greyscale_lightness,
sinm_greyscale_average,
sinm_greyscale_luminance,
sinm_greyscale_count, //Used for iterating, not a valid option
} sinm_greyscale_type;
#ifdef SI_NORMALMAP_GPU
typedef struct {
uint32_t fbo, buffer;
} sinm_gpu_buffer;
#endif
#endif //SINM_TYPES
#ifndef SI_NORMALMAP_IMPLEMENTATION
SINM_DEF void sinm_greyscale(const uint32_t* in, uint32_t* out, int32_t w, int32_t h, sinm_greyscale_type type);
//Converts values in "buffer" to greyscale using either the
//lightness, average or luminance methods
//Result can be produced in-place if "in" and "out" are the same buffers
SINM_DEF uint32_t* sinm_normal_map(const uint32_t* in, int32_t w, int32_t h, float scale, float blurRadius, sinm_greyscale_type greyscaleType, int flipY);
//Converts input buffer to a normal map and returns a pointer to it.
// "scale" controls the intensity of the result
// "blurRadius" controls the radius for gaussian blurring before generating normals
// "greyscaleType" specifies the conversion method from color to greyscale before
// generating the normal map. This step is skipped when using sinm_greyscale_none.
#else //SI_NORMALMAP_IMPLEMENTATION
#include <emmintrin.h>
#include <intrin.h>
#ifdef __AVX__
#define simd_prefix_float(name) _mm256_##name
#define SINM_SIMD_WIDTH 8
#define simd__int __m256i
#define simd__float __m256
#define simd__and_ix(a, b) _mm256_and_si256(a, b)
#define simd__or_ix(a, b) _mm256_or_si256(a, b)
#define simd__loadu_ix(a) _mm256_loadu_si256(a)
#define simd__storeu_ix(ptr, v) _mm256_storeu_si256(ptr, v)
#else
#define simd_prefix_float(name) _mm_##name
#define SINM_SIMD_WIDTH 4
#define simd__int __m128i
#define simd__float __m128
#define simd__and_ix(a, b) _mm_and_si128(a, b)
#define simd__or_ix(a, b) _mm_or_si128(a, b)
#define simd__loadu_ix(a) _mm_loadu_si128(a)
#define simd__storeu_ix(ptr, v) _mm_storeu_si128(ptr, v)
#endif // __AVX__
#define simd__set1_epi32(a) simd_prefix_float(set1_epi32(a))
#define simd__setzero_ix() simd_prefix_float(setzero_si256())
#define simd__setzero_ps() simd_prefix_float(setzero_ps())
#define simd__andnot_ps(a, b) simd_prefix_float(andnot_ps(a, b))
#define simd__add_epi32(a, b) simd_prefix_float(add_epi32(a, b))
#define simd__sub_epi32(a, b) simd_prefix_float(sub_epi32(a, b))
#define simd__max_epi32(a, b) simd_prefix_float(max_epi32(a, b))
#define simd__min_epi32(a, b) simd_prefix_float(min_epi32(a, b))
#define simd__loadu_ps(a) simd_prefix_float(loadu_ps(a))
#define simd__srli_epi32(a, i) simd_prefix_float(srli_epi32(a, i))
#define simd__slli_epi32(a, i) simd_prefix_float(slli_epi32(a, i))
#define simd__set1_ps(a) simd_prefix_float(set1_ps(a))
#define simd__cvtepi32_ps(a) simd_prefix_float(cvtepi32_ps(a))
#define simd__cvtps_epi32(a) simd_prefix_float(cvtps_epi32(a))
#define simd__add_ps(a, b) simd_prefix_float(add_ps(a, b))
#define simd__mul_ps(a, b) simd_prefix_float(mul_ps(a, b))
#define simd__sqrt_ps(a) simd_prefix_float(sqrt_ps(a))
#define simd__cmp_ps(a, b, c) simd_prefix_float(cmp_ps(a, b, c))
#define simd__div_ps(a, b) simd_prefix_float(div_ps(a, b))
#define simd__hadd_ps(a, b) simd_prefix_float(hadd_ps(a, b))
#define simd__cvtss_f32(a) simd_prefix_float(cvtss_f32(a))
#define sinm__min(a, b) ((a) < (b) ? (a) : (b))
#define sinm__max(a, b) ((a) > (b) ? (a) : (b))
typedef struct
{
int32_t x, y;
} sinm__v2i;
typedef struct
{
float x, y, z;
} sinm__v3;
sinm__inline static float
sinm__length(float x, float y, float z)
{
return sqrtf(x * x + y * y + z * z);
}
sinm__inline static simd__float
sinm__length_simd(simd__float x, simd__float y, simd__float z)
{
return simd__sqrt_ps(simd__add_ps(simd__add_ps(simd__mul_ps(x, x), simd__mul_ps(y, y)), simd__mul_ps(z, z)));
}
sinm__inline static sinm__v3
sinm__normalized(float x, float y, float z)
{
sinm__v3 result;
float len = sinm__length(x, y, z);
if (len > 1e-04f) {
float invLen = 1.0f / len;
result.x = x * invLen;
result.y = y * invLen;
result.z = z * invLen;
} else {
result.x = result.y = result.z = 0.0f;
}
return result;
}
sinm__inline static uint32_t
sinm__lightness_average(uint32_t r, uint32_t g, uint32_t b)
{
return (sinm__max(sinm__max(r, g), b) + sinm__min(sinm__min(r, g), b)) / 2;
}
sinm__inline static uint32_t
sinm__average(uint32_t r, uint32_t g, uint32_t b)
{
return (r + g + b) / 3;
}
//NOTE: bias is based on human eye sensitivity
sinm__inline static uint32_t
sinm__luminance(uint32_t r, uint32_t g, uint32_t b)
{
return (uint32_t)(0.21f * r + 0.72f * g + 0.07f * b);
}
sinm__inline static uint32_t
sinm__greyscale_from_byte(uint8_t c)
{
return (c | c << 8u | c << 16u | 255u << 24u);
}
static sinm__inline sinm__v3
sinm__rgba_to_v3(uint32_t c)
{
sinm__v3 result = {
(float)((c >> 0) & 0xFFu) - 127.0f,
(float)((c >> 8) & 0xFFu) - 127.0f,
(float)((c >> 16) & 0xFFu) - 127.0f
};
return result;
}
static sinm__inline void
sinm__rgba_to_v3_simd(simd__int c, simd__float* x, simd__float* y, simd__float* z)
{
simd__int ff = simd__set1_epi32(0xFF);
simd__int v127 = simd__set1_epi32(127);
*x = simd__cvtepi32_ps(simd__sub_epi32(simd__and_ix(simd__srli_epi32(c, 0), ff), v127));
*y = simd__cvtepi32_ps(simd__sub_epi32(simd__and_ix(simd__srli_epi32(c, 8), ff), v127));
*z = simd__cvtepi32_ps(simd__sub_epi32(simd__and_ix(simd__srli_epi32(c, 16), ff), v127));
}
static sinm__inline uint32_t
sinm__unit_vector_to_rgba(sinm__v3 v)
{
uint32_t r = (uint32_t)((1.0f + v.x) * 127.0f);
uint32_t g = (uint32_t)((1.0f + v.y) * 127.0f);
uint32_t b = (uint32_t)((1.0f + v.z) * 127.0f);
return r | g << 8u | b << 16u | 255u << 24u;
}
static sinm__inline simd__int
sinm__v3_to_rgba_simd(simd__float x, simd__float y, simd__float z)
{
simd__float one = simd__set1_ps(1.0f);
simd__float v127 = simd__set1_ps(127.0f);
simd__int a = simd__set1_epi32(255u << 24u);
simd__int r = simd__cvtps_epi32(simd__mul_ps(simd__add_ps(one, x), v127));
simd__int g = simd__cvtps_epi32(simd__mul_ps(simd__add_ps(one, y), v127));
simd__int b = simd__cvtps_epi32(simd__mul_ps(simd__add_ps(one, z), v127));
simd__int c = simd__or_ix(simd__or_ix(simd__or_ix(r, simd__slli_epi32(g, 8)), simd__slli_epi32(b, 16)), a);
return c;
}
SINM_DEF void
sinm__generate_gaussian_box(float* outBoxes, int32_t n, float sigma)
{
float wIdeal = sqrtf((12.0f * sigma * sigma / (float)n) + 1.0f);
int32_t wl = (int32_t)floorf(wIdeal);
if (wl % 2 == 0)
--wl;
int32_t wu = wl + 2;
float mIdeal = (12.0f * sigma * sigma - n * wl * wl - 4.0f * n * wl - 3.0f * n) / (-4.0f * wl - 4.0f);
int32_t m = (int32_t)roundf(mIdeal);
for (int i = 0; i < n; ++i) {
outBoxes[i] = (i < m) ? (float)wl : (float)wu;
}
}
//NOTE: decently optimized box blur based on http://blog.ivank.net/fastest-gaussian-blur.html
SINM_DEF void
sinm__box_blur_h(uint32_t* in, uint32_t* out, int32_t w, int32_t h, float r)
{
float invR = 1.0f / (r + r + 1);
for (int i = 0; i < h; ++i) {
int32_t oi = i * w;
int32_t li = oi;
int32_t ri = (int32_t)(oi + r);
uint32_t fv = in[oi] & 0xFFu;
uint32_t lv = in[oi + w - 1] & 0xFFu;
uint32_t sum = (uint32_t)((r + 1.0f) * fv);
for (int j = 0; j < r; ++j) {
sum += in[oi + j] & 0xFFu;
}
for (int j = 0; j <= r; ++j) {
sum += (in[ri++] & 0xFFu) - fv;
out[oi++] = sinm__greyscale_from_byte((uint8_t)(sum * invR));
}
for (int j = (int)r + 1; j < (w - r); ++j) {
sum += (in[ri++] & 0xFFu) - (in[li++] & 0xFFu);
out[oi++] = sinm__greyscale_from_byte((uint8_t)(sum * invR));
}
for (int j = (int)(w - r); j < w; ++j) {
sum += lv - (in[li++] & 0xFFu);
out[oi++] = sinm__greyscale_from_byte((uint8_t)(sum * invR));
}
}
}
SINM_DEF void
sinm__box_blur_v(uint32_t* in, uint32_t* out, int32_t w, int32_t h, float r)
{
float invR = 1.0f / (r + r + 1);
for (int i = 0; i < w; ++i) {
int32_t oi = i;
int32_t li = oi;
int32_t ri = (int32_t)(oi + r * w);
uint32_t fv = in[oi] & 0xFFu;
uint32_t lv = in[oi + w * (h - 1)] & 0xFFu;
uint32_t sum = (uint32_t)((r + 1) * fv);
for (int j = 0; j < r; j++) {
sum += in[oi + j * w] & 0xFFu;
}
for (int j = 0; j <= r; j++) {
sum += (in[ri] & 0xFFu) - fv;
out[oi] = sinm__greyscale_from_byte((uint8_t)(sum * invR));
ri += w;
oi += w;
}
for (int j = (int)(r + 1); j < h - r; j++) {
sum += (in[ri] & 0xFFu) - (in[li] & 0xFFu);
out[oi] = sinm__greyscale_from_byte((uint8_t)(sum * invR));
li += w;
ri += w;
oi += w;
}
for (int j = (int)(h - r); j < h; j++) {
sum += lv - (in[li] & 0xFFu);
out[oi] = sinm__greyscale_from_byte((uint8_t)(sum * invR));
li += w;
oi += w;
}
}
}
SINM_DEF void
sinm__gaussian_box(uint32_t* in, uint32_t* out, int32_t w, int32_t h, float r)
{
float boxes[3];
sinm__generate_gaussian_box(boxes, sizeof(boxes) / sizeof(boxes[0]), r);
for (int i = 0; i < 3; ++i) {
sinm__box_blur_h(in, out, w, h, (boxes[i] - 1) / 2);
sinm__box_blur_v(out, in, w, h, (boxes[i] - 1) / 2);
}
memcpy(out, in, w * h * sizeof(uint32_t));
}
#ifdef SI_NORMALMAP_GPU
static const char* sinm__gaussian_blur_vert_shader_source = {
"#version 410 core\n"
"layout (location = 0) in vec3 iPos;\n"
"layout (location = 1) in vec2 iTexCoords;\n"
"out vec2 TexCoords;\n"
"void main(){\n"
" TexCoords = iTexCoords;\n"
" gl_Position = vec4(iPos, 1.0);\n"
"}\n"
};
static const char* sinm__gaussian_blur_frag_shader_source = {
"#version 410 core\n"
"out vec4 FragColor;\n"
"in vec2 TexCoords;\n"
"uniform sampler2D image;\n"
"uniform bool horizontal;\n"
"uniform float weight[5] = float[] (0.227027, 0.1945946, 0.1216216, 0.054054, 0.016216);\n"
"void main() {\n"
" vec2 tex_offset = 1.0 / textureSize(image, 0); // gets size of single texel\n"
" vec3 result = texture(image, TexCoords).rgb * weight[0]; // current fragment's contribution\n"
" if(horizontal) {\n"
" for(int i = 1; i < 5; ++i) {\n"
" result += texture(image, TexCoords + vec2(tex_offset.x * i, 0.0)).rgb * weight[i];\n"
" result += texture(image, TexCoords - vec2(tex_offset.x * i, 0.0)).rgb * weight[i];\n"
" }\n"
" } else {\n"
" for(int i = 1; i < 5; ++i) {\n"
" result += texture(image, TexCoords + vec2(0.0, tex_offset.y * i)).rgb * weight[i];\n"
" result += texture(image, TexCoords - vec2(0.0, tex_offset.y * i)).rgb * weight[i];\n"
" }\n"
" }\n"
" FragColor = vec4(result, 1.0);\n"
"}\n"
};
typedef struct
{
int initialized;
uint32_t inTex;
uint32_t quadVAO;
uint32_t pingpongFBO[2];
uint32_t pingpongBuffers[2];
uint32_t greyscaleAverageShader;
uint32_t greyscaleLuminanceShader;
uint32_t greyscaleLightnessShader;
uint32_t blurShader;
uint32_t normalMapShader;
uint32_t normalizeShader;
uint32_t compositeShader;
} sinm__opengl_ctx;
static sinm__opengl_ctx sinm__glCtx = { 0 };
SINM_DEF void
sinm_initialize_opengl()
{
const float quadVertices[] = {
// positions // texture Coords
-1.0f, 1.0f, 0.0f, 0.0f, 1.0f, //1
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f, //2
1.0f, 1.0f, 0.0f, 1.0f, 1.0f, //3
1.0f, -1.0f, 0.0f, 1.0f, 0.0f, //4
};
if (!sinm__glCtx.initialized) {
glGenTextures(1, &sinm__glCtx.inTex);
uint32_t quadVBO;
glGenVertexArrays(1, &sinm__glCtx.quadVAO);
glGenBuffers(1, &quadVBO);
glBindVertexArray(sinm__glCtx.quadVAO);
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));
GLuint vShader = glsys::create_shader(GL_VERTEX_SHADER, sinm__gaussian_blur_vert_shader_source);
{
std::string fCode = fsys::read_file<std::string>("shaders/greyscale_average.frag");
GLuint fShader = glsys::create_shader(GL_FRAGMENT_SHADER, fCode);
GLuint program = glsys::create_program(vShader, fShader);
assert(program != 0);
sinm__glCtx.greyscaleAverageShader = program;
}
{
std::string fCode = fsys::read_file<std::string>("shaders/greyscale_luminance.frag");
GLuint fShader = glsys::create_shader(GL_FRAGMENT_SHADER, fCode);
GLuint program = glsys::create_program(vShader, fShader);
assert(program != 0);
sinm__glCtx.greyscaleLuminanceShader = program;
}
{
std::string fCode = fsys::read_file<std::string>("shaders/greyscale_lightness.frag");
GLuint fShader = glsys::create_shader(GL_FRAGMENT_SHADER, fCode);
GLuint program = glsys::create_program(vShader, fShader);
assert(program != 0);
sinm__glCtx.greyscaleLightnessShader = program;
}
{
GLuint fShader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fShader, 1, &sinm__gaussian_blur_frag_shader_source, NULL);
glCompileShader(fShader);
GLuint program = glCreateProgram();
glAttachShader(program, vShader);
glAttachShader(program, fShader);
glLinkProgram(program);
sinm__glCtx.blurShader = program;
}
{
std::string fCode = fsys::read_file<std::string>("shaders/normal_map.frag");
GLuint fShader = glsys::create_shader(GL_FRAGMENT_SHADER, fCode);
GLuint program = glsys::create_program(vShader, fShader);
assert(program != 0);
sinm__glCtx.normalMapShader = program;
}
{
std::string fCode = fsys::read_file<std::string>("shaders/normalize.frag");
GLuint fShader = glsys::create_shader(GL_FRAGMENT_SHADER, fCode);
GLuint program = glsys::create_program(vShader, fShader);
assert(program != 0);
sinm__glCtx.normalizeShader = program;
}
{
std::string fCode = fsys::read_file<std::string>("shaders/composite.frag");
GLuint fShader = glsys::create_shader(GL_FRAGMENT_SHADER, fCode);
GLuint program = glsys::create_program(vShader, fShader);
assert(program != 0);
sinm__glCtx.compositeShader = program;
}
sinm__glCtx.initialized = 1;
assert(!glsys::report_errors());
}
}
//NOTE: GPU -> RAM copy is slow. Only use this function if you really need to(such as writing the data to a file)
SINM_DEF void
sinm_gpu_normal_map_to_buffer(uint32_t* out, uint32_t inFBO, int32_t w, int32_t h)
{
assert(inFBO != 0); //opengl context not initialized
assert(out);
assert(w > 0 && h > 0);
BEGIN_TIMER(gpu_to_buffer_copy)
glBindFramebuffer(GL_FRAMEBUFFER, inFBO);
glReadBuffer(GL_COLOR_ATTACHMENT0);
glReadPixels(0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, out);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
END_TIMER(gpu_to_buffer_copy)
}
SINM_DEF void
sinm_composite_gpu(sinm_gpu_buffer outBuffer, const sinm_gpu_buffer* inBuffers, int32_t count, int32_t w, int32_t h)
{
assert(sinm__glCtx.initialized);
assert(inBuffers);
if (count <= 1) {
return;
}
count = sinm__min(5, count);
glUseProgram(sinm__glCtx.compositeShader);
glViewport(0, 0, w, h);
#define MAX_COMPOSITE_LAYERS 5
int texUnis[MAX_COMPOSITE_LAYERS] = {};
texUnis[0] = glGetUniformLocation(sinm__glCtx.compositeShader, "images[0]");
texUnis[1] = glGetUniformLocation(sinm__glCtx.compositeShader, "images[1]");
texUnis[2] = glGetUniformLocation(sinm__glCtx.compositeShader, "images[2]");
texUnis[3] = glGetUniformLocation(sinm__glCtx.compositeShader, "images[3]");
texUnis[4] = glGetUniformLocation(sinm__glCtx.compositeShader, "images[4]");
for (int i = 0; i < count; ++i) {
glUniform1i(texUnis[i], i);
}
glUniform1i(glGetUniformLocation(sinm__glCtx.compositeShader, "numImages"), count);
glBindVertexArray(sinm__glCtx.quadVAO);
glBindFramebuffer(GL_FRAMEBUFFER, outBuffer.fbo);
for (int i = 0; i < count; ++i) {
glActiveTexture(GL_TEXTURE0 + i);
uint32_t buffer = inBuffers[i].buffer;
glBindTexture(GL_TEXTURE_2D, buffer);
}
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, 0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
//TODO optimize
SINM_DEF void
sinm__normal_map_gpu(const uint32_t* inBuffer, uint32_t outFBO, int32_t w, int32_t h, float scale, int numBlurPasses, sinm_greyscale_type greyscaleType, int flipY = 0)
{
assert(sinm__glCtx.initialized);
assert(outFBO != 0);
assert(inBuffer);
glBindTexture(GL_TEXTURE_2D, sinm__glCtx.inTex);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, inBuffer);
glGenFramebuffers(2, sinm__glCtx.pingpongFBO);
glGenTextures(2, sinm__glCtx.pingpongBuffers);
for (unsigned int i = 0; i < 2; i++) {
glBindFramebuffer(GL_FRAMEBUFFER, sinm__glCtx.pingpongFBO[i]);
glBindTexture(GL_TEXTURE_2D, sinm__glCtx.pingpongBuffers[i]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, w, h, 0, GL_RGBA, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, sinm__glCtx.pingpongBuffers[i], 0);
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glViewport(0, 0, w, h);
glActiveTexture(GL_TEXTURE0);
glBindVertexArray(sinm__glCtx.quadVAO);
if (greyscaleType != sinm_greyscale_none) {
switch (greyscaleType) {
case sinm_greyscale_average: {
glUseProgram(sinm__glCtx.greyscaleAverageShader);
} break;
case sinm_greyscale_luminance: {
glUseProgram(sinm__glCtx.greyscaleLuminanceShader);
} break;
case sinm_greyscale_lightness: {
glUseProgram(sinm__glCtx.greyscaleLightnessShader);
} break;
default: {
//INVALID OPTION
assert(false);
} break;
}
glBindFramebuffer(GL_FRAMEBUFFER, sinm__glCtx.pingpongFBO[0]);
glBindTexture(GL_TEXTURE_2D, sinm__glCtx.inTex);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
}
{ //Blur passes
glUseProgram(sinm__glCtx.blurShader);
GLint texUni = glGetUniformLocation(sinm__glCtx.blurShader, "image");
GLint horizontalUni = glGetUniformLocation(sinm__glCtx.blurShader, "horizontal");
glUniform1i(texUni, 0);
int blurPasses = sinm__max(2, numBlurPasses * 2);
int horizontal = 1;
int firstIteration = 1;
for (int i = 0; i < blurPasses; ++i) {
glBindFramebuffer(GL_FRAMEBUFFER, sinm__glCtx.pingpongFBO[horizontal]);
glUniform1i(horizontalUni, horizontal);
glBindTexture(GL_TEXTURE_2D, sinm__glCtx.pingpongBuffers[!horizontal]);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
horizontal = !horizontal;
firstIteration = false;
}
}
assert(!glsys::report_errors());
{ //Conversion to normal map
glUseProgram(sinm__glCtx.normalMapShader);
GLint texUni = glGetUniformLocation(sinm__glCtx.normalMapShader, "image");
GLint scaleUni = glGetUniformLocation(sinm__glCtx.normalMapShader, "scale");
GLint flipYUni = glGetUniformLocation(sinm__glCtx.normalMapShader, "flipY");
glUniform1i(texUni, 0);
glUniform1f(scaleUni, sinm__max(1.0f, scale));
float yDir = (flipY) ? -1.0f : 1.0f;
glUniform1f(flipYUni, yDir);
glBindFramebuffer(GL_FRAMEBUFFER, outFBO);
glBindTexture(GL_TEXTURE_2D, sinm__glCtx.pingpongBuffers[1]);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
assert(!glsys::report_errors());
}
assert(!glsys::report_errors());
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glUseProgram(0);
}
#endif
SINM_DEF void
sinm__sobel3x3_normals_row_range(const uint32_t* in, uint32_t* out, int32_t xs, int32_t xe, int32_t w, int32_t h, float scale, int flipY)
{
const float xk[3][3] = {
{ -1, 0, 1 },
{ -2, 0, 2 },
{ -1, 0, 1 },
};
const float yk[3][3] = {
{ -1, -2, -1 },
{ 0, 0, 0 },
{ 1, 2, 1 },
};
float yDir = (flipY) ? -1.0f : 1.0f;
for (int32_t y = 0; y < h; ++y) {
for (int32_t x = xs; x < xe; ++x) {
float xmag = 0.0f;
float ymag = 0.0f;
for (int32_t a = 0; a < 3; ++a) {
for (int32_t b = 0; b < 3; ++b) {
int32_t xIdx = sinm__min(w - 1, sinm__max(1, x + b - 1));
int32_t yIdx = sinm__min(h - 1, sinm__max(1, y + a - 1));
int32_t index = yIdx * w + xIdx;
uint32_t pixel = in[index] & 0xFFu;
xmag += pixel * xk[a][b];
ymag += pixel * yk[a][b];
}
}
sinm__v3 color = sinm__normalized(xmag * scale, ymag * scale * yDir, 255.0f);
out[y * w + x] = sinm__unit_vector_to_rgba(color);
}
}
}
static sinm__inline void
sinm__sobel3x3_normals(const uint32_t* in, uint32_t* out, int32_t w, int32_t h, float scale, int flipY)
{
sinm__sobel3x3_normals_row_range(in, out, 0, w, w, h, scale, flipY);
}
static void
sinm__sobel3x3_normals_simd(const uint32_t* in, uint32_t* out, int32_t w, int32_t h, float scale, int flipY)
{
const float xk[3][4] = {
{ -1, 0, 1, 0 },
{ -2, 0, 2, 0 },
{ -1, 0, 1, 0 },
};
const float yk[3][4] = {
{ -1, -2, -1, 0 },
{ 0, 0, 0, 0 },
{ 1, 2, 1, 0 },
};
simd__float simdScale = simd__set1_ps(scale);
simd__float simdFlipY = simd__set1_ps((flipY) ? -1.0f : 1.0f);
simd__float simd1 = simd__set1_ps(1.0f);
simd__float simd127 = simd__set1_ps(127.0f);
int32_t batchCounter = 0;
sinm__aligned_var(float, SINM_SIMD_WIDTH) xBatch[SINM_SIMD_WIDTH];
sinm__aligned_var(float, SINM_SIMD_WIDTH) yBatch[SINM_SIMD_WIDTH];
for (int32_t yIter = 0; yIter < h; ++yIter) {
for (int32_t xIter = SINM_SIMD_WIDTH; xIter < w - SINM_SIMD_WIDTH; ++xIter) {
__m128 xmag = _mm_set1_ps(0.0f);
__m128 ymag = _mm_set1_ps(0.0f);
for (int32_t a = 0; a < 3; ++a) {
int32_t xIdx = sinm__min(w - 1, sinm__max(1, xIter - 1));
int32_t yIdx = sinm__min(h - 1, sinm__max(1, yIter + a - 1));
int32_t index = yIdx * w + xIdx;
__m128i pixel = _mm_loadu_si128((__m128i*)&in[index]);
pixel = _mm_and_si128(pixel, _mm_set1_epi32(0xFFu));
__m128 pixelf = _mm_cvtepi32_ps(pixel);
__m128 kx = _mm_loadu_ps((float*)&xk[a]);
__m128 ky = _mm_loadu_ps((float*)&yk[a]);
xmag = _mm_add_ps(_mm_mul_ps(pixelf, kx), xmag);
ymag = _mm_add_ps(_mm_mul_ps(pixelf, ky), ymag);
}
__m128 xSum = _mm_hadd_ps(xmag, xmag);
__m128 ySum = _mm_hadd_ps(ymag, ymag);
float xn = _mm_cvtss_f32(_mm_hadd_ps(xSum, xSum));
float yn = _mm_cvtss_f32(_mm_hadd_ps(ySum, ySum));
xBatch[batchCounter] = xn;
yBatch[batchCounter++] = yn;
if (batchCounter == SINM_SIMD_WIDTH) {
batchCounter = 0;
simd__float x = simd__loadu_ps(xBatch);
simd__float y = simd__loadu_ps(yBatch);
simd__float z = simd__set1_ps(255.0f);
x = simd__mul_ps(simd__mul_ps(x, simdScale), simdFlipY);
y = simd__mul_ps(simd__mul_ps(y, simdScale), simdFlipY);
//normalize
simd__float len = sinm__length_simd(x, y, z);
simd__float invLen = simd__div_ps(simd__set1_ps(1.0f), len);
x = simd__mul_ps(x, invLen);
y = simd__mul_ps(y, invLen);
z = simd__mul_ps(z, invLen);
int index = yIter * w + (xIter - (SINM_SIMD_WIDTH - 1));
simd__storeu_ix((simd__int*)&out[index], sinm__v3_to_rgba_simd(x, y, z));
}
}
}
sinm__sobel3x3_normals_row_range(in, out, 0, SINM_SIMD_WIDTH, w, h, scale, flipY);
sinm__sobel3x3_normals_row_range(in, out, w - SINM_SIMD_WIDTH, w, w, h, scale, flipY);
}
SINM_DEF void
sinm__normalize(uint32_t* in, int32_t w, int32_t h, float scale, int flipY)
{
float invScale = 1.0f / scale;
float yDir = (flipY) ? -1.0f : 1.0f;
for (int32_t i = 0; i < w * h; ++i) {
sinm__v3 v = sinm__rgba_to_v3(in[i]);
in[i] = sinm__unit_vector_to_rgba(sinm__normalized(v.x, v.y * yDir, v.z * invScale));
}
}
SINM_DEF void
sinm__normalize_simd(uint32_t* in, int32_t w, int32_t h, float scale, int flipY)
{
assert(w % SINM_SIMD_WIDTH == 0);
for (int32_t i = 0; i < w * h; i += SINM_SIMD_WIDTH) {
simd__int pixel = simd__loadu_ix((simd__int*)&in[i]);
simd__float x, y, z;
sinm__rgba_to_v3_simd(pixel, &x, &y, &z);
simd__float len = sinm__length_simd(x, y, z);
simd__float invLen = simd__div_ps(simd__set1_ps(1.0f), len);
x = simd__mul_ps(x, invLen);
y = simd__mul_ps(y, invLen);
z = simd__mul_ps(z, invLen);
simd__storeu_ix((simd__int*)&in[i], sinm__v3_to_rgba_simd(x, y, z));
}
}
#if 0
SINM_DEF void
sinm__normalize_gpu(uint32_t* in, )
{
}
#endif
SINM_DEF sinm__inline void
sinm_normalize(uint32_t* in, int32_t w, int32_t h, float scale, int flipY)
{
if (w % SINM_SIMD_WIDTH == 0) {
sinm__normalize_simd(in, w, h, scale, flipY);
} else {
sinm__normalize(in, w, h, scale, flipY);
}
}
SINM_DEF void sinm__composite(const uint32_t* in1, const uint32_t* in2, uint32_t* out, int32_t w, int32_t h)
{
for (int32_t i = 0; i < w * h; ++i) {
uint32_t c1 = in1[i];
uint32_t c2 = in2[i];
uint32_t r1 = c1 & 0xFFu;
uint32_t r2 = c2 & 0xFFu;
uint32_t g1 = (c1 >> 8) & 0xFFu;
uint32_t g2 = (c2 >> 8) & 0xFFu;
uint32_t b1 = (c1 >> 16) & 0xFFu;
uint32_t b2 = (c2 >> 16) & 0xFFu;
uint32_t r = (r1 + r2) >> 1;
uint32_t g = (g1 + g2) >> 1;
uint32_t b = (b1 + b2) >> 1;
out[i] = (r | g << 8u | b << 16u | 255u << 24u);
}
}
SINM_DEF void sinm__composite_simd(const uint32_t* in1, const uint32_t* in2, uint32_t* out, int32_t w, int32_t h)
{
simd__int ff = simd__set1_epi32(0xFF);
simd__int alpha = simd__slli_epi32(ff, 24);
for (int32_t i = 0; i < w * h; i += SINM_SIMD_WIDTH) {
simd__int c1 = simd__loadu_ix((simd__int*)&in1[i]);
simd__int c2 = simd__loadu_ix((simd__int*)&in2[i]);
simd__int r1 = simd__and_ix(c1, ff);
simd__int r2 = simd__and_ix(c2, ff);
simd__int g1 = simd__and_ix(simd__srli_epi32(c1, 8), ff);
simd__int g2 = simd__and_ix(simd__srli_epi32(c2, 8), ff);
simd__int b1 = simd__and_ix(simd__srli_epi32(c1, 16), ff);
simd__int b2 = simd__and_ix(simd__srli_epi32(c2, 16), ff);
simd__int r = simd__srli_epi32(simd__add_epi32(r1, r2), 1);
simd__int g = simd__srli_epi32(simd__add_epi32(g1, g2), 1);
simd__int b = simd__srli_epi32(simd__add_epi32(b1, b2), 1);
simd__int final = simd__or_ix(simd__or_ix(simd__or_ix(r, simd__slli_epi32(g, 8)), simd__slli_epi32(b, 16)), alpha);
simd__storeu_ix((simd__int*)&out[i], final);
}
}
SINM_DEF sinm__inline void
sinm_composite(const uint32_t* in1, const uint32_t* in2, uint32_t* out, int32_t w, int32_t h)
{
if ((w * h) % SINM_SIMD_WIDTH == 0) {
sinm__composite_simd(in1, in2, out, w, h);
} else {
sinm__composite(in1, in2, out, w, h);
}
}
SINM_DEF sinm__inline uint32_t*
sinm_composite_alloc(const uint32_t* in1, const uint32_t* in2, int32_t w, int32_t h)
{
uint32_t* result = (uint32_t*)malloc(sizeof(uint32_t) * w * h);
if (result) {
sinm_composite(in1, in2, result, w, h);
}
return result;
}
static void
sinm__greyscale(const uint32_t* in, uint32_t* out, int32_t w, int32_t h, sinm_greyscale_type type)
{
int32_t count = w * h;
switch (type) {
case sinm_greyscale_lightness: {
for (int32_t i = 0; i < count; ++i) {
uint32_t c = in[i];
uint32_t l = sinm__lightness_average(c & 0xFFu, (c >> 8) & 0xFFu, (c >> 16) & 0xFFu);
out[i] = sinm__greyscale_from_byte(l);
}
} break;
case sinm_greyscale_average: {
for (int32_t i = 0; i < count; ++i) {
uint32_t c = in[i];
uint32_t l = sinm__average(c & 0xFFu, (c >> 8) & 0xFFu, (c >> 16) & 0xFFu);
out[i] = sinm__greyscale_from_byte(l);
}
} break;
case sinm_greyscale_luminance: {
for (int32_t i = 0; i < count; ++i) {
uint32_t c = in[i];
uint32_t l = sinm__luminance(c & 0xFFu, (c >> 8) & 0xFFu, (c >> 16) & 0xFFu);
out[i] = sinm__greyscale_from_byte(l);
}
} break;
default: {
//INVALID OPTION
assert(false);
} break;
}
}
static void
sinm__simd_greyscale(const uint32_t* in, uint32_t* out, int32_t w, int32_t h, sinm_greyscale_type type)
{
simd__int redMask = simd__set1_epi32(0xFF);
simd__int greenMask = simd__set1_epi32(0xFF00u);
simd__int blueMask = simd__set1_epi32(0xFF0000u);
simd__int alpha = simd__set1_epi32(0xFF000000u);
int32_t count = w * h;
switch (type) {
case sinm_greyscale_lightness: {
for (int32_t i = 0; i < count; i += SINM_SIMD_WIDTH) {
simd__int c = simd__loadu_ix((simd__int*)&in[i]);
simd__int r = simd__and_ix(c, redMask);
simd__int g = simd__srli_epi32(simd__and_ix(c, greenMask), 8);
simd__int b = simd__srli_epi32(simd__and_ix(c, blueMask), 16);
simd__int max = simd__max_epi32(simd__max_epi32(r, g), b);
simd__int min = simd__min_epi32(simd__min_epi32(r, g), b);
simd__int l = simd__srli_epi32(simd__add_epi32(min, max), 1);
l = simd__or_ix(simd__slli_epi32(l, 16),
simd__or_ix(simd__slli_epi32(l, 8),
simd__or_ix(l, alpha)));
simd__storeu_ix((simd__int*)&out[i], l);
}
} break;
case sinm_greyscale_average: {
simd__float inverse3 = simd__set1_ps(1.0f / 3.0f);
for (int32_t i = 0; i < count; i += SINM_SIMD_WIDTH) {
simd__int c = simd__loadu_ix((simd__int*)&in[i]);
simd__int r = simd__and_ix(c, redMask);
simd__int g = simd__srli_epi32(simd__and_ix(c, greenMask), 8);
simd__int b = simd__srli_epi32(simd__and_ix(c, blueMask), 16);
simd__int s = simd__add_epi32(simd__add_epi32(r, g), b);
s = simd__cvtps_epi32(simd__mul_ps(simd__cvtepi32_ps(s), inverse3));
s = simd__or_ix(simd__slli_epi32(s, 16),
simd__or_ix(simd__slli_epi32(s, 8),
simd__or_ix(s, alpha)));
simd__storeu_ix((simd__int*)&out[i], s);
}
} break;
case sinm_greyscale_luminance: {
simd__float rBias = simd__set1_ps(0.21f);
simd__float gBias = simd__set1_ps(0.72f);
simd__float bBias = simd__set1_ps(0.07f);
for (int32_t i = 0; i < count; i += SINM_SIMD_WIDTH) {
simd__int c = simd__loadu_ix((simd__int*)&in[i]);
simd__float r = simd__cvtepi32_ps(simd__and_ix(c, redMask));
simd__float g = simd__cvtepi32_ps(simd__srli_epi32(simd__and_ix(c, greenMask), 8));
simd__float b = simd__cvtepi32_ps(simd__srli_epi32(simd__and_ix(c, blueMask), 16));
r = simd__mul_ps(r, rBias);
g = simd__mul_ps(g, gBias);
b = simd__mul_ps(b, bBias);
simd__int sum = simd__cvtps_epi32(simd__add_ps(r, simd__add_ps(g, b)));
sum = simd__or_ix(simd__slli_epi32(sum, 16),
simd__or_ix(simd__slli_epi32(sum, 8),
simd__or_ix(sum, alpha)));
simd__storeu_ix((simd__int*)&out[i], sum);
}
} break;
default: {
//INVALID OPTION
assert(false);
} break;
}
}
SINM_DEF void
sinm_greyscale(const uint32_t* in, uint32_t* out, int32_t w, int32_t h, sinm_greyscale_type type)
{
int32_t count = w * h;
if (count % SINM_SIMD_WIDTH == 0) {
sinm__simd_greyscale(in, out, w, h, type);
} else {
sinm__greyscale(in, out, w, h, type);
}
}
SINM_DEF int
sinm_normal_map_buffer(const uint32_t* in, uint32_t* out, int32_t w, int32_t h, float scale, float blurRadius, sinm_greyscale_type greyscaleType, int flipY)
{
assert(w > 0 && h > 0);
uint32_t* intermediate = (uint32_t*)malloc(w * h * sizeof(uint32_t));
if (intermediate) {
BEGIN_TIMER(greyscale)
if (greyscaleType != sinm_greyscale_none) {
sinm_greyscale(in, out, w, h, greyscaleType);
} else {
memcpy(out, in, w * h * sizeof(uint32_t));
}