-
-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy path2Multiple_Linear_Regression.py
170 lines (137 loc) · 5.35 KB
/
2Multiple_Linear_Regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sys
sys.path.append("D:\Github\Machine-Learning-Basic-Codes")
import warnings
warnings.filterwarnings('ignore')
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from utils.visualize import *
from utils.tool_func import *
class l2_regularization():
def __init__(self, alpha):
self.alpha = alpha
# L2正则化的方差
def __call__(self, w):
loss = w.T.dot(w)
return self.alpha * 0.5 * float(loss)
# L2正则化的梯度
def grad(self, w):
return self.alpha * w
class Skylark_LinearRegression():
def __init__(self, n_epoch=500, learning_rate=0.00001, regularization=l2_regularization(0.01), use_gradient=True):
self.epoch = n_epoch
self.learning_rate = learning_rate
self.use_gradient = use_gradient # 是否使用梯度下降法
self.init_theta = None # 初始化参数
self.final_theta = None # 最终参数
self.cost = [] # 代价数据
if regularization == None:
self.regularization = lambda x: 0
self.regularization.grad = lambda x: 0
else:
self.regularization = regularization
def initialize_weights(self, n_features):
# 随机初始化参数
limit = np.sqrt(1 / n_features)
w = np.random.uniform(-limit, limit, (n_features, 1))
b = 0
self.init_theta = np.insert(w, 0, b, axis=0)
def fit(self, X, y):
m_samples, n_features = X.shape
self.initialize_weights(n_features)
X = np.insert(X, 0, 1, axis=1)
y = np.reshape(y, (m_samples, 1))
if self.use_gradient == True:
# 使用梯度下降法
final_theta, cost_data = self.batch_gradient_decent(
self.init_theta, X, y, self.epoch, self.learning_rate)
self.final_theta = final_theta
self.cost = cost_data
else:
# 使用正规方程法
X = np.matrix(X)
y = np.matrix(y)
X_T_X = X.T.dot(X)
X_T_X_I_X_T = X_T_X.I.dot(X.T)
X_T_X_I_X_T_X_T_y = X_T_X_I_X_T.dot(y)
self.final_theta = X_T_X_I_X_T_X_T_y
def predict(self, X):
X = np.insert(X, 0, 1, axis=1)
y_pred = X.dot(self.final_theta)
return y_pred
def batch_gradient_decent(self, theta, X, y, epoch, learning_rate):
'''
批量梯度下降, 拟合线性回归, 返回参数和代价
epoch: 批处理的轮数
theta: 网络参数
learning_rate: 学习率
'''
cost_data = [self.lr_cost(theta, X, y)]
_theta = theta.copy() # 拷贝一份,不和原来的theta混淆
for _ in range(epoch):
_theta = _theta - learning_rate * self.gradient(_theta, X, y)
cost_data.append(self.lr_cost(_theta, X, y))
return _theta, cost_data
def gradient(self, theta, X, y):
m = X.shape[0]
# (m,n).T @ (m, 1) -> (n, 1),X @ theta等价于X.dot(theta)
inner = np.dot(X.T, (np.dot(X, theta) - y)) + \
self.regularization.grad(theta)
return inner / m
def lr_cost(self, theta, X, y):
'''
X: R(m*n), m 样本数, n 特征数
y: R(m)
theta : R(n), 线性回归的参数
'''
m = X.shape[0] # m为样本数
inner = np.dot(X, theta) - y # R(m*1),X @ theta等价于X.dot(theta)
# 1*m @ m*1 = 1*1 in matrix multiplication
# but you know numpy didn't do transpose in 1d array, so here is just a
# vector inner product to itselves
square_sum = np.dot(inner.T, inner)
cost = square_sum / (2 * m) + self.regularization(theta)
return cost
def visual_cost(self):
figure, ax = plt.subplots()
nums = np.arange(len(self.cost))
ax.plot(nums, np.array(self.cost).reshape((len(self.cost,))))
ax.set_xlabel('epoch')
ax.set_ylabel('cost')
plt.show()
if __name__ == '__main__':
use_sklearn = False
# Data Preprocessing
dataset = pd.read_csv('./dataset/50_Startups.csv')
X = dataset.iloc[:, :-1].values
Y = dataset.iloc[:, 4].values
# Encoding Categorical data
labelencoder = LabelEncoder()
X[:, 3] = labelencoder.fit_transform(X[:, 3])
onehotencoder = OneHotEncoder(categorical_features=[3])
X = onehotencoder.fit_transform(X).toarray()
# Avoiding Dummy Variable Trap
X = X[:, 1:]
# Making Dataset
X_train, X_test, Y_train, Y_test = train_test_split(
X, Y, test_size=0.2, random_state=0)
if use_sklearn:
from sklearn.linear_model import LinearRegression
# Fitting Simple Linear Regression Model to the training set
regressor = LinearRegression()
regressor.fit(X_train, Y_train)
else:
regressor = Skylark_LinearRegression()
regressor.fit(X_train, Y_train)
regressor.visual_cost()
# Predecting the Result
Y_pred = regressor.predict(X_test)
# MSE
print_mse(Y_test, Y_pred, reg_name='MLR')
# Visualization
visualization_reg(X_train, Y_train, regressor,
reg_name='Multiple Linear Regression', set_name='Training')
visualization_reg(X_test, Y_test, regressor,
reg_name='Multiple Linear Regression', set_name='Test')