diff --git a/doc/source/_static/my_theme.css b/doc/source/_static/my_theme.css new file mode 100644 index 000000000..3e7617d43 --- /dev/null +++ b/doc/source/_static/my_theme.css @@ -0,0 +1,3 @@ +.wy-table-responsive table td, .wy-table-responsive table th { + white-space: inherit; +} \ No newline at end of file diff --git a/doc/source/conf.py b/doc/source/conf.py index f00d281ec..025121677 100644 --- a/doc/source/conf.py +++ b/doc/source/conf.py @@ -68,6 +68,10 @@ # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' +html_theme_options = { + "rightsidebar": "true", + "relbarbgcolor": "black" +} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, @@ -90,3 +94,4 @@ def setup(app): 'enable_auto_doc_ref': True, }, True) app.add_transform(AutoStructify) + app.add_css_file('my_theme.css') diff --git a/doc/source/index.rst b/doc/source/index.rst index 95bd85ba4..f53b97dd6 100644 --- a/doc/source/index.rst +++ b/doc/source/index.rst @@ -9,7 +9,7 @@ Rofunc: The Full Process Python Package for Robot Learning from Demonstration Rofunc ---------------- :doc:`overview` - + Show motivation, pipeline and list the available functions of `rofunc` package. :doc:`devices/README` How to record, process, visual and export the multimodal demonstration data. :doc:`lfd/README` diff --git a/doc/source/overview.md b/doc/source/overview.md deleted file mode 100644 index 9a6c41d60..000000000 --- a/doc/source/overview.md +++ /dev/null @@ -1,59 +0,0 @@ -# Overview - -Rofunc package focuses on the **robotic Imitation Learning (IL) and Learning from Demonstration (LfD)** fields and provides valuable and -convenient python functions for robotics, including _demonstration collection, data pre-processing, LfD algorithms, planning, and control methods_. We also plan to provide an Isaac Gym-based robot simulator for evaluation. This package aims to advance the field by building a full-process toolkit and validation platform that simplifies and standardizes the process of demonstration data collection, processing, learning, and its deployment on robots. - -![](../../img/pipeline.png) - -## Installation -The installation is very easy, - -``` -pip install rofunc -``` - -and as you'll find later, it's easy to use as well! - -```python -import rofunc as rf -``` - -Thus, have fun in the robotics world! - - -## Available functions -Currently, we provide a simple document; please refer to [here](./rofunc/). A comprehensive one with both English and -Chinese versions is built via the [readthedoc](https://rofunc.readthedocs.io/en/stable/). -The available functions and plans can be found as follows. - - -| Classes | Types | Functions | Description | Status | -|---------------------------------|--------------|-------------------------|----------------------------------------------------------------------|--------| -| **Devices** | Xsens | `xsens.record` | Record the human motion via network streaming | | -| | | `xsens.process` | Decode the .mvnx file | ✅ | -| | | `xsens.visualize` | Show or save gif about the motion | ✅ | -| | Optitrack | `optitrack.record` | Record the motion of markers via network streaming | | -| | | `optitrack.process` | Process the output .csv data | ✅ | -| | | `optitrack.visualize` | Show or save gif about the motion | | -| | ZED | `zed.record` | Record with multiple cameras | ✅ | -| | | `zed.playback` | Playback the recording and save snapshots | ✅ | -| | | `zed.export` | Export the recording to mp4 | ✅ | -| | Multimodal | `mmodal.record` | Record multi-modal demonstration data simultaneously | | -| | | `mmodal.export` | Export multi-modal demonstration data in one line | ✅ | -| **Learning from Demonstration** | DMP | `dmp.uni` | DMP for one agent with several (or one) demonstrated trajectories | | -| | GMR | `gmr.uni` | GMR for one agent with several (or one) demonstrated trajectories | ✅ | -| | TP-GMM | `tpgmm.uni` | TP-GMM for one agent with several (or one) demonstrated trajectories | ✅ | -| | | `tpgmm.bi` | TP-GMM for two agent with coordination learned from demonstration | ✅ | -| | TP-GMR | `tpgmr.uni` | TP-GMR for one agent with several (or one) demonstrated trajectories | ✅ | -| | | `tpgmr.bi` | TP-GMR for two agent with coordination learned from demonstration | ✅ | -| **Planning** | LQT | `lqt.uni` | LQT for one agent with several via-points | ✅ | -| | | `lqt.bi` | LQT for two agent with coordination constraints | ✅ | -| | | `lqt.recursive` | Generate smooth trajectories for robot execution recursively | ✅ | -| **Logger** | | `logger.write` | Custom tensorboard-based logger | | -| **Coordinate** | | `coord.custom_class` | Define the custom class of `Pose` | | -| | | `coord.transform` | Useful functions about coordinate transformation | ✅ | -| **VisuaLab** | Trajectory | `visualab.trajectory` | 2-dim/3-dim/with ori trajectory visualization | ✅ | -| | Distribution | `visualab.distribution` | 2-dim/3-dim distribution visualization | ✅ | -| | Ellipsoid | `visualab.ellipsoid` | 2-dim/3-dim ellipsoid visualization | ✅ | -| **RoboLab** | Kinematics | `robolab.kinematics` | ... | ✅ | - diff --git a/doc/source/overview.rst b/doc/source/overview.rst new file mode 100644 index 000000000..217f79493 --- /dev/null +++ b/doc/source/overview.rst @@ -0,0 +1,120 @@ +Overview +===== + +Rofunc package focuses on the **robotic Imitation Learning (IL) and Learning from Demonstration (LfD)** fields and provides valuable and +convenient python functions for robotics, including _demonstration collection, data pre-processing, LfD algorithms, planning, and control methods_. We also plan to provide an Isaac Gym-based robot simulator for evaluation. This package aims to advance the field by building a full-process toolkit and validation platform that simplifies and standardizes the process of demonstration data collection, processing, learning, and its deployment on robots. + +.. image:: ../../img/pipeline.png + +Installation +---- +The installation is very easy, + +.. code-block:: python + + pip install rofunc + +and as you'll find later, it's easy to use as well! + +.. code-block:: python + + import rofunc as rf + + +Thus, have fun in the robotics world! + + +Available functions +--- +Currently, we provide a simple document; please refer to [here](./rofunc/). A comprehensive one with both English and +Chinese versions is built via the [readthedoc](https://rofunc.readthedocs.io/en/stable/). +The available functions and plans can be found as follows. + ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| Classes | Types | Functions | Description | ++==================================+===============+==========================+=======================================================================+ +| **Devices** | Xsens | `xsens.record` | Record The Human Motion Via Network Streaming | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | | `xsens.process` | Decode The .mvnx File | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | | `xsens.visualize` | Show Or Save Gif About The Motion | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | Optitrack | `optitrack.record` | Record The Motion Of Markers Via Network Streaming | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | | `optitrack.process` | Process The Output .csv Data | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | | `optitrack.visualize` | Show Or Save Gif About The Motion | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | ZED | `zed.record` | Record With Multiple Cameras | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | | `zed.playback` | Playback The Recording And Save Snapshots | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | | `zed.export` | Export The Recording To Mp4 | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | Multimodal | `mmodal.record` | Record Multi-Modal Demonstration Data Simultaneously | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | | `mmodal.export` | Export Multi-Modal Demonstration Data In One Line | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| **Learning From Demonstration** | DMP | `dmp.uni` | DMP For One Agent With Several (or One) Demonstrated Trajectories | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | GMR | `gmr.uni` | GMR For One Agent With Several (or One) Demonstrated Trajectories | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | TP-GMM | `tpgmm.uni` | TP-GMM For One Agent With Several (or One) Demonstrated Trajectories | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | | `tpgmm.bi` | TP-GMM For Two Agent With Coordination Learned From Demonstration | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | TP-GMR | `tpgmr.uni` | TP-GMR For One Agent With Several (or One) Demonstrated Trajectories | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | | `tpgmr.bi` | TP-GMR For Two Agent With Coordination Learned From Demonstration | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| **Planning** | LQT | `lqt.uni` | LQT For One Agent With Several Via-Points | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | | `lqt.bi` | LQT For Two Agent With Coordination Constraints | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | | `lqt.recursive` | Generate Smooth Trajectories For Robot Execution Recursively | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| **Logger** | | `logger.write` | Custom Tensorboard-Based Logger | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| **Coordinate** | | `coord.custom_class` | Define The Custom Class Of `Pose` | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | | `coord.transform` | Useful Functions About Coordinate Transformation | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| **VisuaLab** | Trajectory | `visualab.trajectory` | 2-Dim/3-Dim/with Ori Trajectory Visualization | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | Distribution | `visualab.distribution` | 2-Dim/3-Dim Distribution Visualization | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| | Ellipsoid | `visualab.ellipsoid` | 2-Dim/3-Dim Ellipsoid Visualization | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ +| **RoboLab** | Kinematics | `robolab.kinematics` | ... | ++----------------------------------+---------------+--------------------------+-----------------------------------------------------------------------+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/doc/source/releaselog.md b/doc/source/releaselog.md index e69de29bb..d244d48ae 100644 --- a/doc/source/releaselog.md +++ b/doc/source/releaselog.md @@ -0,0 +1 @@ +# Release log \ No newline at end of file