-
Notifications
You must be signed in to change notification settings - Fork 2
/
astro.cpp
971 lines (835 loc) · 30.9 KB
/
astro.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
/* this is code to compute lunar and solar positions.
* it is hacked together for HamClock from my XEphem's libastro, see https://clearskyinstitute.com/xephem
*
* unit test:
* g++ -D_UNIT_TEST -O2 -Wall -o astro-test astro.cpp
*/
#ifdef _UNIT_TEST
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <time.h>
typedef struct {
float az, el;
float ra, dec;
float gha;
float dist;
float vel;
float phase;
} AstroCir;
typedef struct {
float lat, lng;
float lat_d, lng_d;
} LatLong;
#define deg2rad(x) ((x)*M_PI/180)
#define rad2deg(x) ((x)*180/M_PI)
#else
#include "HamClock.h"
#endif
#define hr2deg(x) ((x)*15.)
#define deg2hr(x) ((x)/15.)
#define hr2rad(x) deg2rad(hr2deg(x))
#define rad2hr(x) deg2hr(rad2deg(x))
#define SIDRATE .9972695677
#define REF_PRESS 1000
#define REF_TEMP 10
/* insure 0 <= *v < r.
*/
static void range (double *v, double r)
{
*v -= r*floor(*v/r);
}
/* given the mjd, find the geocentric ecliptic longitude, lam, and latitude,
* bet, and horizontal parallax, hp for the moon.
* N.B. series for long and lat are good to about 10 and 3 arcseconds.
* N.B. still need to correct for nutation. then for topocentric location
* further correct for parallax and refraction.
*/
static void moon (double mjd, double *lam, double *bet, double *hp)
{
double t, t2;
double ld;
double ms;
double md;
double de;
double f;
double n;
double a, sa, sn, b, sb, c, sc, e, e2, l, g, w1, w2;
double m1, m2, m3, m4, m5, m6;
t = mjd/36525.;
t2 = t*t;
m1 = mjd/27.32158213;
m1 = 360.0*(m1-(long)m1);
m2 = mjd/365.2596407;
m2 = 360.0*(m2-(long)m2);
m3 = mjd/27.55455094;
m3 = 360.0*(m3-(long)m3);
m4 = mjd/29.53058868;
m4 = 360.0*(m4-(long)m4);
m5 = mjd/27.21222039;
m5 = 360.0*(m5-(long)m5);
m6 = mjd/6798.363307;
m6 = 360.0*(m6-(long)m6);
ld = 270.434164+m1-(.001133-.0000019*t)*t2;
ms = 358.475833+m2-(.00015+.0000033*t)*t2;
md = 296.104608+m3+(.009192+.0000144*t)*t2;
de = 350.737486+m4-(.001436-.0000019*t)*t2;
f = 11.250889+m5-(.003211+.0000003*t)*t2;
n = 259.183275-m6+(.002078+.000022*t)*t2;
a = deg2rad(51.2+20.2*t);
sa = sin(a);
sn = sin(deg2rad(n));
b = 346.56+(132.87-.0091731*t)*t;
sb = .003964*sin(deg2rad(b));
c = deg2rad(n+275.05-2.3*t);
sc = sin(c);
ld = ld+.000233*sa+sb+.001964*sn;
ms = ms-.001778*sa;
md = md+.000817*sa+sb+.002541*sn;
f = f+sb-.024691*sn-.004328*sc;
de = de+.002011*sa+sb+.001964*sn;
e = 1-(.002495+7.52e-06*t)*t;
e2 = e*e;
ld = deg2rad(ld);
ms = deg2rad(ms);
n = deg2rad(n);
de = deg2rad(de);
f = deg2rad(f);
md = deg2rad(md);
l = 6.28875*sin(md)+1.27402*sin(2*de-md)+.658309*sin(2*de)+
.213616*sin(2*md)-e*.185596*sin(ms)-.114336*sin(2*f)+
.058793*sin(2*(de-md))+.057212*e*sin(2*de-ms-md)+
.05332*sin(2*de+md)+.045874*e*sin(2*de-ms)+.041024*e*sin(md-ms);
l = l-.034718*sin(de)-e*.030465*sin(ms+md)+.015326*sin(2*(de-f))-
.012528*sin(2*f+md)-.01098*sin(2*f-md)+.010674*sin(4*de-md)+
.010034*sin(3*md)+.008548*sin(4*de-2*md)-e*.00791*sin(ms-md+2*de)-
e*.006783*sin(2*de+ms);
l = l+.005162*sin(md-de)+e*.005*sin(ms+de)+.003862*sin(4*de)+
e*.004049*sin(md-ms+2*de)+.003996*sin(2*(md+de))+
.003665*sin(2*de-3*md)+e*.002695*sin(2*md-ms)+
.002602*sin(md-2*(f+de))+e*.002396*sin(2*(de-md)-ms)-
.002349*sin(md+de);
l = l+e2*.002249*sin(2*(de-ms))-e*.002125*sin(2*md+ms)-
e2*.002079*sin(2*ms)+e2*.002059*sin(2*(de-ms)-md)-
.001773*sin(md+2*(de-f))-.001595*sin(2*(f+de))+
e*.00122*sin(4*de-ms-md)-.00111*sin(2*(md+f))+.000892*sin(md-3*de);
l = l-e*.000811*sin(ms+md+2*de)+e*.000761*sin(4*de-ms-2*md)+
e2*.000704*sin(md-2*(ms+de))+e*.000693*sin(ms-2*(md-de))+
e*.000598*sin(2*(de-f)-ms)+.00055*sin(md+4*de)+.000538*sin(4*md)+
e*.000521*sin(4*de-ms)+.000486*sin(2*md-de);
l = l+e2*.000717*sin(md-2*ms);
*lam = ld+deg2rad(l);
range (lam, 2*M_PI);
g = 5.12819*sin(f)+.280606*sin(md+f)+.277693*sin(md-f)+
.173238*sin(2*de-f)+.055413*sin(2*de+f-md)+.046272*sin(2*de-f-md)+
.032573*sin(2*de+f)+.017198*sin(2*md+f)+.009267*sin(2*de+md-f)+
.008823*sin(2*md-f)+e*.008247*sin(2*de-ms-f);
g = g+.004323*sin(2*(de-md)-f)+.0042*sin(2*de+f+md)+
e*.003372*sin(f-ms-2*de)+e*.002472*sin(2*de+f-ms-md)+
e*.002222*sin(2*de+f-ms)+e*.002072*sin(2*de-f-ms-md)+
e*.001877*sin(f-ms+md)+.001828*sin(4*de-f-md)-e*.001803*sin(f+ms)-
.00175*sin(3*f);
g = g+e*.00157*sin(md-ms-f)-.001487*sin(f+de)-e*.001481*sin(f+ms+md)+
e*.001417*sin(f-ms-md)+e*.00135*sin(f-ms)+.00133*sin(f-de)+
.001106*sin(f+3*md)+.00102*sin(4*de-f)+.000833*sin(f+4*de-md)+
.000781*sin(md-3*f)+.00067*sin(f+4*de-2*md);
g = g+.000606*sin(2*de-3*f)+.000597*sin(2*(de+md)-f)+
e*.000492*sin(2*de+md-ms-f)+.00045*sin(2*(md-de)-f)+
.000439*sin(3*md-f)+.000423*sin(f+2*(de+md))+
.000422*sin(2*de-f-3*md)-e*.000367*sin(ms+f+2*de-md)-
e*.000353*sin(ms+f+2*de)+.000331*sin(f+4*de);
g = g+e*.000317*sin(2*de+f-ms+md)+e2*.000306*sin(2*(de-ms)-f)-
.000283*sin(md+3*f);
w1 = .0004664*cos(n);
w2 = .0000754*cos(c);
*bet = deg2rad(g)*(1-w1-w2);
*hp = .950724+.051818*cos(md)+.009531*cos(2*de-md)+.007843*cos(2*de)+
.002824*cos(2*md)+.000857*cos(2*de+md)+e*.000533*cos(2*de-ms)+
e*.000401*cos(2*de-md-ms)+e*.00032*cos(md-ms)-.000271*cos(de)-
e*.000264*cos(ms+md)-.000198*cos(2*f-md);
*hp = *hp+.000173*cos(3*md)+.000167*cos(4*de-md)-e*.000111*cos(ms)+
.000103*cos(4*de-2*md)-.000084*cos(2*md-2*de)-
e*.000083*cos(2*de+ms)+.000079*cos(2*de+2*md)+.000072*cos(4*de)+
e*.000064*cos(2*de-ms+md)-e*.000063*cos(2*de+ms-md)+
e*.000041*cos(ms+de);
*hp = *hp+e*.000035*cos(2*md-ms)-.000033*cos(3*md-2*de)-
.00003*cos(md+de)-.000029*cos(2*(f-de))-e*.000029*cos(2*md+ms)+
e2*.000026*cos(2*(de-ms))-.000023*cos(2*(f-de)+md)+
e*.000019*cos(4*de-ms-md);
*hp = deg2rad(*hp);
}
/* given the modified Julian date, mjd, find the obliquity of the
* ecliptic, *eps, in radians.
*/
static void obliquity (double mjd, double *eps)
{
double t = mjd/36525.;
*eps = deg2rad(2.345229444E1 - ((((-1.81E-3*t)+5.9E-3)*t+4.6845E1)*t)/3600.0);
}
/* given the modified JD, mjd, find the nutation in obliquity, *deps, and
* the nutation in longitude, *dpsi, each in radians.
*/
static void nutation (double mjd, double *deps, double *dpsi)
{
double ls, ld; /* sun's mean longitude, moon's mean longitude */
double ms, md; /* sun's mean anomaly, moon's mean anomaly */
double nm; /* longitude of moon's ascending node */
double t, t2; /* number of Julian centuries of 36525 days since
* Jan 0.5 1900.
*/
double tls, tnm, tld; /* twice above */
double a, b; /* temps */
t = mjd/36525.;
t2 = t*t;
a = 100.0021358*t;
b = 360.*(a-(long)a);
ls = 279.697+.000303*t2+b;
a = 1336.855231*t;
b = 360.*(a-(long)a);
ld = 270.434-.001133*t2+b;
a = 99.99736056000026*t;
b = 360.*(a-(long)a);
ms = 358.476-.00015*t2+b;
a = 13255523.59*t;
b = 360.*(a-(long)a);
md = 296.105+.009192*t2+b;
a = 5.372616667*t;
b = 360.*(a-(long)a);
nm = 259.183+.002078*t2-b;
/* convert to radian forms for use with trig functions.
*/
tls = 2*deg2rad(ls);
nm = deg2rad(nm);
tnm = 2*nm;
ms = deg2rad(ms);
tld = 2*deg2rad(ld);
md = deg2rad(md);
/* find delta psi and eps, in arcseconds.
*/
*dpsi = (-17.2327-.01737*t)*sin(nm)+(-1.2729-.00013*t)*sin(tls)
+.2088*sin(tnm)-.2037*sin(tld)+(.1261-.00031*t)*sin(ms)
+.0675*sin(md)-(.0497-.00012*t)*sin(tls+ms)
-.0342*sin(tld-nm)-.0261*sin(tld+md)+.0214*sin(tls-ms)
-.0149*sin(tls-tld+md)+.0124*sin(tls-nm)+.0114*sin(tld-md);
*deps = (9.21+.00091*t)*cos(nm)+(.5522-.00029*t)*cos(tls)
-.0904*cos(tnm)+.0884*cos(tld)+.0216*cos(tls+ms)
+.0183*cos(tld-nm)+.0113*cos(tld+md)-.0093*cos(tls-ms)
-.0066*cos(tls-nm);
/* convert to radians.
*/
*dpsi = deg2rad(*dpsi/3600);
*deps = deg2rad(*deps/3600);
}
static void ecleq_aux (int sw, double mjd, double x, double y, double *p, double *q)
{
double seps, ceps; /* sin and cos of mean obliquity */
double sx, cx, sy, cy, ty;
double eps;
double deps, dpsi;
obliquity (mjd, &eps); /* mean obliquity for date */
nutation (mjd, &deps, &dpsi);
eps += deps;
seps = sin(eps);
ceps = cos(eps);
sy = sin(y);
cy = cos(y); /* always non-negative */
if (fabs(cy)<1e-20) cy = 1e-20; /* insure > 0 */
ty = sy/cy;
cx = cos(x);
sx = sin(x);
*q = asin((sy*ceps)-(cy*seps*sx*sw));
*p = atan(((sx*ceps)+(ty*seps*sw))/cx);
if (cx<0) *p += M_PI; /* account for atan quad ambiguity */
range (p, 2*M_PI);
}
/* given the modified Julian date, mjd, and a geocentric ecliptic latitude,
* *lat, and longititude, *lng, each in radians, find the corresponding
* equitorial ra and dec, also each in radians.
* correction for the effect on the angle of the obliquity due to nutation is
* included.
*/
static void ecl_eq (double mjd, double lat, double lng, double *ra, double *dec)
{
ecleq_aux (-1, mjd, lng, lat, ra, dec);
}
/* given the mean anomaly, ma, and the eccentricity, s, of elliptical motion,
* find the true anomaly, *nu, and the eccentric anomaly, *ea.
* all angles in radians.
*/
static void anomaly (double ma, double s, double *nu, double *ea)
{
double m, fea;
m = ma-2*M_PI*(long)(ma/(2*M_PI));
if (m > M_PI) m -= 2*M_PI;
if (m < -M_PI) m += 2*M_PI;
fea = m;
if (s < 1.0) {
/* elliptical */
double dla;
while (1) {
dla = fea-(s*sin(fea))-m;
if (fabs(dla)<1e-6)
break;
dla /= 1-(s*cos(fea));
fea -= dla;
}
*nu = 2*atan(sqrt((1+s)/(1-s))*tan(fea/2));
} else {
/* hyperbolic */
double corr = 1;
while (fabs(corr) > 0.000001) {
corr = (m - s * sinh(fea) + fea) / (s*cosh(fea) - 1);
fea += corr;
}
*nu = 2*atan(sqrt((s+1)/(s-1))*tanh(fea/2));
}
*ea = fea;
}
/* given the modified JD, mjd, return the true geocentric ecliptic longitude
* of the sun for the mean equinox of the date, *lsn, in radians, and the
* sun-earth distance, *rsn, in AU. (the true ecliptic latitude is never more
* than 1.2 arc seconds and so may be taken to be a constant 0.)
* if the APPARENT ecliptic longitude is required, correct the longitude for
* nutation to the true equinox of date and for aberration (light travel time,
* approximately -9.27e7/186000/(3600*24*365)*2*pi = -9.93e-5 radians).
*/
static void sunpos (double mjd, double *lsn, double *rsn)
{
double t, t2;
double ls, ms; /* mean longitude and mean anomoay */
double s, nu, ea; /* eccentricity, true anomaly, eccentric anomaly */
double a, b, a1, b1, c1, d1, e1, h1, dl, dr;
t = mjd/36525.;
t2 = t*t;
a = 100.0021359*t;
b = 360.*(a-(long)a);
ls = 279.69668+.0003025*t2+b;
a = 99.99736042000039*t;
b = 360*(a-(long)a);
ms = 358.47583-(.00015+.0000033*t)*t2+b;
s = .016751-.0000418*t-1.26e-07*t2;
anomaly (deg2rad(ms), s, &nu, &ea);
a = 62.55209472000015*t;
b = 360*(a-(long)a);
a1 = deg2rad(153.23+b);
a = 125.1041894*t;
b = 360*(a-(long)a);
b1 = deg2rad(216.57+b);
a = 91.56766028*t;
b = 360*(a-(long)a);
c1 = deg2rad(312.69+b);
a = 1236.853095*t;
b = 360*(a-(long)a);
d1 = deg2rad(350.74-.00144*t2+b);
e1 = deg2rad(231.19+20.2*t);
a = 183.1353208*t;
b = 360*(a-(long)a);
h1 = deg2rad(353.4+b);
dl = .00134*cos(a1)+.00154*cos(b1)+.002*cos(c1)+.00179*sin(d1)+
.00178*sin(e1);
dr = 5.43e-06*sin(a1)+1.575e-05*sin(b1)+1.627e-05*sin(c1)+
3.076e-05*cos(d1)+9.27e-06*sin(h1);
*lsn = nu+deg2rad(ls-ms+dl);
*rsn = 1.0000002*(1-s*cos(ea))+dr;
range (lsn, 2*M_PI);
}
/* given geocentric ecliptic longitude and latitude, lam and bet, of some object
* and the longitude of the sun, lsn, find the elongation, el. this is the
* actual angular separation of the object from the sun, not just the difference
* in the longitude. the sign, however, IS set simply as a test on longitude
* such that el will be >0 for an evening object <0 for a morning object.
* to understand the test for el sign, draw a graph with lam going from 0-2*M_PI
* down the vertical axis, lsn going from 0-2*M_PI across the hor axis. then
* define the diagonal regions bounded by the lines lam=lsn+M_PI, lam=lsn and
* lam=lsn-M_PI. the "morning" regions are any values to the lower left of the
* first line and bounded within the second pair of lines.
* all angles in radians.
*/
static void elongation (double lam, double bet, double lsn, double *el)
{
*el = acos(cos(bet)*cos(lam-lsn));
if (lam>lsn+M_PI || (lam>lsn-M_PI && lam<lsn)) *el = - *el;
}
/* given the modified Julian date (number of days elapsed since 1900 jan 0.5,),
* mjd, return the calendar date in months, *mn, days, *dy, and years, *yr.
*/
static void mjd_cal (double mjd, int *mn, double *dy, int *yr)
{
double d, f;
double i, a, b, ce, g;
d = mjd + 0.5;
i = floor(d);
f = d-i;
if (f == 1) {
f = 0;
i += 1;
}
if (i > -115860.0) {
a = floor((i/36524.25)+.9983573)+14;
i += 1 + a - floor(a/4.0);
}
b = floor((i/365.25)+.802601);
ce = i - floor((365.25*b)+.750001)+416;
g = floor(ce/30.6001);
*mn = g - 1;
*dy = ce - floor(30.6001*g)+f;
*yr = b + 1899;
if (g > 13.5)
*mn = g - 13;
if (*mn < 2.5)
*yr = b + 1900;
if (*yr < 1)
*yr -= 1;
}
/* given a date in months, mn, days, dy, years, yr,
* return the modified Julian date (number of days elapsed since 1900 jan 0.5),
* *mjd.
*/
static void cal_mjd (int mn, double dy, int yr, double *mjd)
{
int b, d, m, y;
long c;
m = mn;
y = (yr < 0) ? yr + 1 : yr;
if (mn < 3) {
m += 12;
y -= 1;
}
if (yr < 1582 || (yr == 1582 && (mn < 10 || (mn == 10 && dy < 15))))
b = 0;
else {
int a;
a = y/100;
b = 2 - a + a/4;
}
if (y < 0)
c = (long)((365.25*y) - 0.75) - 694025L;
else
c = (long)(365.25*y) - 694025L;
d = 30.6001*(m+1);
*mjd = b + c + d + dy - 0.5;
}
static double mjd_day(double jd)
{
return (floor(jd-0.5)+0.5);
}
static double mjd_hr(double jd)
{
return ((jd-mjd_day(jd))*24.0);
}
static double tnaught (double mjd)
{
double dmjd;
int m, y;
double d;
double t, t0;
mjd_cal (mjd, &m, &d, &y);
cal_mjd (1, 0., y, &dmjd);
t = dmjd/36525;
t0 = 6.57098e-2 * (mjd - dmjd) -
(24 - (6.6460656 + (5.1262e-2 + (t * 2.581e-5))*t) -
(2400 * (t - (((double)y - 1900)/100))));
return (t0);
}
/* given a modified julian date, mjd, and a universally coordinated time, utc,
* return greenwich mean siderial time, *gst.
*/
static void utc_gst (double mjd, double utc, double *gst)
{
double t0 = tnaught (mjd);
*gst = (1.0/SIDRATE)*utc + t0;
range (gst, 24.0);
}
static void now_lst (double mjd, double lng, double *lst)
{
utc_gst (mjd_day(mjd), mjd_hr(mjd), lst);
*lst += rad2hr(lng);
range (lst, 24.0);
}
// return days since 1900 jan 0.5
static double unix2mjd (long unix_time)
{
return ((unix_time/86400.0) + 2440587.5 - 2415020.0);
}
/* given true ha and dec, tha and tdec, the geographical latitude, phi, the
* height above sea-level (as a fraction of the earths radius, 6378.16km),
* ht, and the equatorial horizontal parallax, ehp, find the apparent
* ha and dec, aha and adec allowing for parallax.
* all angles in radians. ehp is the angle subtended at the body by the
* earth's equator.
*/
static void ta_par (double tha, double tdec, double phi, double ht, double ehp, double *aha, double *adec)
{
double rp; /* distance to object in Earth radii */
double ctha;
double stdec, ctdec;
double tdtha, dtha;
double caha;
double cphi, sphi, u, rsp, rcp;
cphi = cos(phi);
sphi = sin(phi);
u = atan(9.96647e-1*sphi/cphi);
rsp = (9.96647e-1*sin(u))+(ht*sphi);
rcp = cos(u)+(ht*cphi);
rp = 1/sin(ehp);
ctha = cos(tha);
stdec = sin(tdec);
ctdec = cos(tdec);
tdtha = (rcp*sin(tha))/((rp*ctdec)-(rcp*ctha));
dtha = atan(tdtha);
*aha = tha+dtha;
caha = cos(*aha);
range (aha, 2*M_PI);
*adec = atan(caha*(rp*stdec-rsp)/(rp*ctdec*ctha-rcp));
}
/* the actual formula is the same for both transformation directions so
* do it here once for each way.
* N.B. all arguments are in radians.
*/
static void aaha_aux (double lat, double x, double y, double *p, double *q)
{
double sy, cy;
double sx, cx;
double sinlat = sin (lat);
double coslat = cos (lat);
sy = sin (y);
cy = cos (y);
sx = sin (x);
cx = cos (x);
*q = asin ((sy*sinlat) + (cy*coslat*cx));
*p = atan2 (-cy*sx, -cy*cx*sinlat + sy*coslat);
}
/* given latitude (n+, radians), lat, hour angle (radians), ha, and declination
* (radians), dec,
* return altitude (up+, radians), alt, and
* azimuth (angle round to the east from north+, radians),
*/
static void hadec_aa (double lat, double ha, double dec, double *alt, double *az)
{
aaha_aux (lat, ha, dec, az, alt);
}
/* correct the true altitude, ta, for refraction to the apparent altitude, aa,
* each in radians, given the local atmospheric pressure, pr, in mbars, and
* the temperature, tr, in degrees C.
*/
static void refract (double pr, double tr, double ta, double *aa)
{
double r; /* refraction correction*/
if (ta >= deg2rad(15.)) {
/* model for altitudes at least 15 degrees above horizon */
r = 7.888888e-5*pr/((273+tr)*tan(ta));
} else if (ta > deg2rad(-5.)) {
/* hairier model for altitudes at least -5 and below 15 degrees */
double a, b, tadeg = rad2deg(ta);
a = ((2e-5*tadeg+1.96e-2)*tadeg+1.594e-1)*pr;
b = (273+tr)*((8.45e-2*tadeg+5.05e-1)*tadeg+1);
r = deg2rad(a/b);
} else {
/* do nothing if more than 5 degrees below horizon.
*/
r = 0;
}
*aa = ta + r;
}
/* given UNIX time, location, and function to compute object gha and dec,
* return UNIX secs of next rise and set.
* if never rises: *trise (only) will be 0; if never sets: *tset (only) will be 0.
*/
static void riseset (const time_t t0, const LatLong &ll,
void (*cir_func)(time_t t0, const LatLong &ll, AstroCir &cir), time_t *riset, time_t *sett)
{
/* use the generalized sunrise equation:
* cos w = (sin(a) - sin(phi) sin (del))/(cos(phi) cos (del))
* w = hr angle at sunrise (neg) or sunset (pos)
* phi = lat of observer
* del = object dec
* a = real altitude at sunrise
* N.B. do need some iteration especially for moon
* N.B. we presume cir_func does not include refraction, so we do it here.
*/
#define MAX_LOOP 10 // rarely more than a few unless near a pole
#define MAX_DT 30 // convergence tolerance, secs
double cos_riseset_ha, riseset_ha, local_ha, rise_deg, set_deg;
AstroCir cir;
int n_loops;
// refraction correction
double ref_dep = 0;
refract (REF_PRESS, REF_TEMP, ref_dep, &ref_dep);
// printf ("ref_dep %g\n", rad2deg(ref_dep)*60);
// repeat riset until converges
*riset = t0 + 6*3600;
// printf (" RS2: rise %ld\n", *riset);
time_t rt;
n_loops = 0;
do {
rt = *riset;
// find gha and dec of
(*cir_func)(rt, ll, cir);
// find cos of rise/set ha, no event if outside -1..1
cos_riseset_ha = (sin (-ref_dep) - sin(ll.lat)*sin(cir.dec))/(cos(ll.lat)*cos(cir.dec));
if (cos_riseset_ha < -1) {
// printf ("RS: lat= %g no set\n", ll.lat_d);
*riset = 1;
*sett = 0;
return;
}
if (cos_riseset_ha > 1) {
// printf ("RS: lat= %g no rise\n", ll.lat_d);
*riset = 0;
*sett = 1;
return;
}
// find rise/set ha, 0 .. 180 degs
riseset_ha = rad2deg (acos (cos_riseset_ha));
// find local solar hour angle now, in degrees, -180 .. 180
local_ha = fmod (rad2deg(cir.gha) + ll.lng_d + 360 + 180, 360) - 180;
// rise: angle -180 .. 180 => time -12 .. +12 hrs
rise_deg = fmod (local_ha + riseset_ha + 360 + 180, 360) - 180;
*riset -= deg2hr(rise_deg)*3600;
// printf (" RS2: rise %ld\n", *riset);
} while (++n_loops < MAX_LOOP && labs (*riset - rt) > MAX_DT);
// printf (" Rise %d loops\n", n_loops);
if (n_loops == MAX_LOOP) {
*riset = 0;
*sett = 1;
return;
}
// repeat sett until converges
*sett = t0 + 6*3600;
// printf (" RS2: set %ld\n", *sett);
time_t st;
n_loops = 0;
do {
st = *sett;
(*cir_func)(st, ll, cir);
cos_riseset_ha = (sin (-ref_dep) - sin(ll.lat)*sin(cir.dec))/(cos(ll.lat)*cos(cir.dec));
if (cos_riseset_ha < -1) {
// printf ("RS: lat= %g no set\n", ll.lat_d);
*sett = 0;
*riset = 1;
return;
}
if (cos_riseset_ha > 1) {
// printf ("RS: lat= %g no rise\n", ll.lat_d);
*riset = 0;
*sett = 1;
return;
}
riseset_ha = rad2deg (acos (cos_riseset_ha));
local_ha = fmod (rad2deg(cir.gha) + ll.lng_d + 360 + 180, 360) - 180;
set_deg = fmod (riseset_ha - local_ha + 360 + 180, 360) - 180;
*sett += deg2hr(set_deg)*3600;
// printf (" RS2: set %ld\n", *sett);
} while (++n_loops < MAX_LOOP && labs (*sett - st) > MAX_DT);
// printf (" Set %d loops\n", n_loops);
if (n_loops == MAX_LOOP) {
*riset = 1;
*sett = 0;
return;
}
}
/* find moon's circumstances now.
* alt is not corrected for refraction so it can be used with HA rise/set algorithm.
*/
static void lunarCir (time_t t0, const LatLong &ll, AstroCir &cir)
{
double ehp;
double lst, alt, az;
double ra, dec, ha;
double lam, bet;
double deps, dpsi;
double lsn, rsn;
double el;
double mjd = unix2mjd (t0);
moon (mjd, &lam, &bet, &ehp); /* moon's true ecliptic loc */
nutation (mjd, &deps, &dpsi); /* correct for nutation */
lam += dpsi;
range (&lam, 2*M_PI);
cir.dist = 6378.14/sin(ehp); /* earth-moon dist, want km */
ecl_eq (mjd, bet, lam, &ra, &dec);
range (&ra, 2*M_PI);
cir.ra = ra;
cir.dec = dec;
sunpos (mjd, &lsn, &rsn);
range (&lsn, 2*M_PI);
elongation (lam, bet, lsn, &el);
cir.phase = el;
now_lst (mjd, ll.lng, &lst);
ha = hr2rad(lst) - ra;
ta_par (ha, dec, ll.lat, 0, ehp, &ha, &dec);
hadec_aa (ll.lat, ha, dec, &alt, &az);
range (&az, 2*M_PI);
cir.el = alt;
cir.az = az;
double gha = ha - ll.lng;
range (&gha, 2*M_PI);
cir.gha = gha;
// vel added by caller
cir.vel = 0;
}
/* find sun's circumstances now.
* alt is not corrected for refraction so it can be used with HA rise/set algorithm.
*/
static void solarCir (time_t t0, const LatLong &ll, AstroCir &cir)
{
double lst, alt, az;
double ra, dec, ha;
double lsn, rsn;
double deps, dpsi;
double mjd = unix2mjd (t0);
sunpos (mjd, &lsn, &rsn); /* sun's true ecliptic long * and dist */
nutation (mjd, &deps, &dpsi); /* correct for nutation */
lsn += dpsi;
lsn -= deg2rad(20.4/3600); /* and light travel time */
cir.dist = rsn;
cir.phase = 0;
ecl_eq (mjd, 0.0, lsn, &ra, &dec);
range (&ra, 2*M_PI);
cir.ra = ra;
cir.dec = dec;
now_lst (mjd, ll.lng, &lst);
ha = hr2rad(lst) - ra;
// printf ("Sun lng %g lst %g ra %g ha %g\n", ll.lng_d, hr2deg(lst), rad2deg(ra), rad2deg(ha));
hadec_aa (ll.lat, ha, dec, &alt, &az);
range (&az, 2*M_PI);
cir.el = alt;
cir.az = az;
double gha = ha - ll.lng;
range (&gha, 2*M_PI);
cir.gha = gha;
// TODO vel
cir.vel = 0;
}
/*******************************************************************************************
*
* HamClock interface
*
*******************************************************************************************/
void getLunarCir (time_t t0, const LatLong &ll, AstroCir &cir)
{
static time_t t0_vel; // time of last vel calc
static float geo_vel; // last vel calc
// info now
lunarCir (t0, ll, cir);
double alt = cir.el;
refract (REF_PRESS, REF_TEMP, alt, &alt);
cir.el = alt;
// get geocentric vel by measuring change over brief time; infrequent ok, it changes slowly
#define UPDATE_DT 3600
#define VEL_DT 200
if (labs (t0 - t0_vel) > UPDATE_DT) {
AstroCir cir_plus;
t0 += VEL_DT;
lunarCir (t0, ll, cir_plus);
t0_vel = t0;
geo_vel = 1000*(cir_plus.dist - cir.dist)/VEL_DT; // want m/s
}
// velocity is sum of earth rotation and lunar distance change
#define EQUATOR_SPEED_MPS 465
float lunar_ha = cir.gha + ll.lng;
float rot_vel = EQUATOR_SPEED_MPS * cosf(ll.lat) * sinf(lunar_ha);
cir.vel = rot_vel + geo_vel;
}
void getSolarCir (time_t t0, const LatLong &ll, AstroCir &cir)
{
// info now
solarCir (t0, ll, cir);
double alt = cir.el;
refract (REF_PRESS, REF_TEMP, alt, &alt);
cir.el = alt;
// TODO: vel
}
void getSolarRS (const time_t t0, const LatLong &ll, time_t *riset, time_t *sett)
{
riseset (t0, ll, getSolarCir, riset, sett);
}
void getLunarRS (const time_t t0, const LatLong &ll, time_t *riset, time_t *sett)
{
riseset (t0, ll, getLunarCir, riset, sett);
}
#if defined (_UNIT_TEST)
static void usage (const char *me)
{
fprintf (stderr, "Purpose: test sun and moon algorithms\n");
fprintf (stderr, "Usage: %s LatN LongE YYYY MM DD HH MM SS\n", me);
exit (1);
}
/* return pointer to static string of the form deg:min.
* N.B. use before next call
*/
static char *prradhexa (double rad)
{
static char prradhexa_str[32];
int sign = rad < 0 ? -1 : 1;
double deg = rad2deg(fabs(rad));
int d = deg;
int m = (deg - d)*60;
sprintf (prradhexa_str, "%3d:%02d", d*sign, m);
return (prradhexa_str);
}
int main (int ac, char *av[])
{
AstroCir cir;
time_t rt, st;
if (ac != 9)
usage (av[0]);
// capture qth
LatLong ll;
memset (&ll, 0, sizeof(ll));
ll.lat_d = atof (av[1]);
ll.lng_d = atof (av[2]);
ll.lat = deg2rad(ll.lat_d);
ll.lng = deg2rad(ll.lng_d);
// convert remaining args to time_t
struct tm tms;
memset (&tms, 0, sizeof(tms));
tms.tm_year = atoi(av[3]) - 1900; // wants year - 1900
tms.tm_mon = atoi(av[4]) - 1; // wants 0..11
tms.tm_mday = atoi(av[5]);
tms.tm_hour = atoi(av[6]);
tms.tm_min = atoi(av[7]);
tms.tm_sec = atoi(av[8]);
setenv ("TZ", "", 1); // UTC
tzset();
time_t t0 = mktime (&tms);
// find sun info
getSolarCir (t0, ll, cir);
printf ("Sun at %g %g @ %ld = %d %d %d %d %d %d:\n", ll.lat_d, ll.lng_d,
t0, tms.tm_year+1900, tms.tm_mon+1, tms.tm_mday, tms.tm_hour, tms.tm_min, tms.tm_sec);
printf (" El: %6.2f %s\n", rad2deg(cir.el), prradhexa(cir.el));
printf (" Az: %6.2f %s\n", rad2deg(cir.az), prradhexa(cir.az));
printf (" RA: %6.2f %s\n", rad2deg(cir.ra), prradhexa(cir.ra/15));
printf (" Dec: %6.2f %s\n", rad2deg(cir.dec), prradhexa(cir.dec));
printf (" GHA: %6.2f %s\n", rad2deg(cir.gha), prradhexa(cir.gha/15));
printf (" Vel: %6.2f\n", cir.vel);
printf (" Dist: %6.4f AU\n", cir.dist);
// find sun rise and set, if any
getSolarRS (t0, ll, &rt, &st);
if (rt && st) {
printf (" Rise: %s", ctime (&rt));
printf (" Set: %s", ctime (&st));
} else {
printf (" No R/S %ld %ld\n", rt, st);
}
// find moon info
getLunarCir (t0, ll, cir);
printf ("Moon at %g %g @ %ld = %d %d %d %d %d %d:\n", ll.lat_d, ll.lng_d,
t0, tms.tm_year+1900, tms.tm_mon+1, tms.tm_mday, tms.tm_hour, tms.tm_min, tms.tm_sec);
printf (" El: %6.2f %s\n", rad2deg(cir.el), prradhexa(cir.el));
printf (" Az: %6.2f %s\n", rad2deg(cir.az), prradhexa(cir.az));
printf (" RA: %6.2f %s\n", rad2deg(cir.ra), prradhexa(cir.ra/15));
printf (" Dec: %6.2f %s\n", rad2deg(cir.dec), prradhexa(cir.dec));
printf (" GHA: %6.2f %s\n", rad2deg(cir.gha), prradhexa(cir.gha/15));
printf (" Vel: %6.2f\n", cir.vel);
printf (" Dist: %6.4f %6.0f\n", cir.dist, cir.dist*376341);
// find moon rise and set, if any
getLunarRS (t0, ll, &rt, &st);
if (rt && st) {
printf (" Rise: %s", ctime (&rt));
printf (" Set: %s", ctime (&st));
} else {
printf (" No R/S %ld %ld\n", rt, st);
}
return (0);
}
#endif // _UNIT_TEST