-
Notifications
You must be signed in to change notification settings - Fork 282
/
Copy pathroc.py
32 lines (27 loc) · 1.01 KB
/
roc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
def cal_metric(target, predicted,show = False):
fpr, tpr, thresholds = roc_curve(target, predicted)
_tpr = (tpr)
_fpr = (fpr)
tpr = tpr.reshape((tpr.shape[0],1))
fpr = fpr.reshape((fpr.shape[0],1))
scale = np.arange(0, 1, 0.00000001)
function = interpolate.interp1d(_fpr, _tpr)
y = function(scale)
znew = abs(scale + y -1)
eer = scale[np.argmin(znew)]
FPRs = {"TPR@FPR=10E-2": 0.01, "TPR@FPR=10E-3": 0.001, "TPR@FPR=10E-4": 0.0001}
TPRs = {"TPR@FPR=10E-2": 0.01, "TPR@FPR=10E-3": 0.001, "TPR@FPR=10E-4": 0.0001}
for i, (key, value) in enumerate(FPRs.items()):
index = np.argwhere(scale == value)
score = y[index]
TPRs[key] = float(np.squeeze(score))
auc = roc_auc_score(target, predicted)
if show:
plt.plot(scale, y)
plt.show()
return eer,TPRs, auc,{'x':scale, 'y':y}