-
Notifications
You must be signed in to change notification settings - Fork 0
/
modelTest.py
86 lines (71 loc) · 2.75 KB
/
modelTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import xgboost as xgb
import cv2
import mediapipe as mp
import numpy as np
class handDetector():
def __init__(self, mode=False, maxHands=1, detectionCon=0.5, trackCon=0.5):
self.mode = mode
self.maxHands = maxHands
selfdetectionCon = detectionCon
self.trackCon = trackCon
self.mpHands = mp.solutions.hands
self.hands = self.mpHands.Hands(static_image_mode=False,
max_num_hands=1,
min_detection_confidence=0.5,
min_tracking_confidence=0.5)
self.mpDraw = mp.solutions.drawing_utils
def findHands(self, img, draw=True):
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.hands.process(imgRGB)
if self.results.multi_hand_landmarks:
for handLms in self.results.multi_hand_landmarks:
if draw:
self.mpDraw.draw_landmarks(img, handLms, self.mpHands.HAND_CONNECTIONS)
return img
def findPosition(self, img, handNo=0, draw=True):
lmlist = []
if self.results.multi_hand_landmarks:
myHand = self.results.multi_hand_landmarks[handNo]
for id, lm in enumerate(myHand.landmark):
h, w, c = img.shape
cx, cy = int(lm.x * w), int(lm.y * h)
lmlist.append([id, cx, cy])
if draw:
cv2.circle(img, (cx, cy), 3, (255, 0, 255), cv2.FILLED)
return lmlist
def normalize(coordinateList):
x9 = coordinateList[9][1]
y9 = coordinateList[9][2]
# Normalize the values
coord_list = []
for subList in coordinateList:
coord_list.append(subList[1]-x9)
coord_list.append(subList[2]-y9)
return coord_list
def classify(data):
hand_classifer = xgb.XGBClassifier()
hand_classifer.load_model('basicModel.json')
data = data.reshape((1,42))
prediction = hand_classifer.predict(data)
predToText = {0:"Thumbs Up", 1: "Thumbs Down", 2:"Open Palm", 3:"Closed Fist"}
print(predToText.get(prediction[0]))
def main():
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH,1920)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT,1080)
#cv2.namedWindow("window", cv2.WND_PROP_FULLSCREEN)
#cv2.setWindowProperty("window",cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)
detector = handDetector()
x = 0
while x<1000:
success, img = cap.read()
img = detector.findHands(img)
lmlist = detector.findPosition(img)
if len(lmlist) != 0:
coord_list = normalize(lmlist)
classify(np.array(coord_list))
cv2.imshow("window", img)
cv2.waitKey(1)
x += 1
if __name__ == "__main__":
main()