-
Notifications
You must be signed in to change notification settings - Fork 37
/
geometry.py
346 lines (263 loc) · 13.7 KB
/
geometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import numpy as np
from typing import Union
class Point:
def __init__(self, x: float, y: float):
self.x = float(x)
self.y = float(y)
def __str__(self):
return 'Point(' + str(self.x) + ', ' + str(self.y) + ')'
def __add__(self, other: 'Point') -> 'Point':
return Point(self.x + other.x, self.y + other.y)
def __sub__(self, other: 'Point') -> 'Point':
return Point(self.x - other.x, self.y - other.y)
def norm(self, p: int = 2) -> float:
return (self.x ** p + self.y ** p)**(1./p)
def dot(self, other: 'Point') -> float:
return self.x * other.x + self.y * other.y
def __mul__(self, other: float) -> 'Point':
return Point(other * self.x, other * self.y)
def __rmul__(self, other: float) -> 'Point':
return self.__mul__(other)
def __truediv__(self, other: float) -> 'Point':
return self.__mul__(1./other)
def isInside(self, other: Union['Line', 'Rectangle', 'Circle', 'Ring']) -> bool:
if isinstance(other, Line):
AM = Line(other.p1, self)
MB = Line(self, other.p2)
return np.close(np.abs(AM.dot(BM)), AM.length * MB.length)
elif isinstance(other, Rectangle):
# Based on https://stackoverflow.com/a/2763387
AB = Line(other.c1, other.c2)
AM = Line(other.c1, self)
BC = Line(other.c2, other.c3)
BM = Line(other.c2, self)
return 0 <= AB.dot(AM) <= AB.dot(AB) and 0 <= BC.dot(BM) <= BC.dot(BC)
elif isinstance(other, Circle):
return self.distanceTo(other.m) <= other.r
elif isinstance(other, Ring):
return other.r_inner <= self.distanceTo(other.m) <= other.r_outer
raise NotImplementedError
def hasPassed(self, other: Union['Point', 'Line', 'Rectangle', 'Circle', 'Ring'], direction: 'Point') -> bool:
if isinstance(other, Point):
p = other
elif isinstance(other, Line):
p = (other.p1 + other.p2) / 2.
elif isinstance(other, Rectangle):
p = (other.c1 + other.c2 + other.c3 + other.c4) / 4.
elif isinstance(other, Circle):
p = other.m
elif isinstance(other, Ring):
p = other.m
else:
raise NotImplementedError
return direction.dot(p - self) <= 0
def distanceTo(self, other: Union['Point', 'Line', 'Rectangle', 'Circle', 'Ring']) -> float:
if isinstance(other, Point):
return (self - other).norm(p = 2)
elif isinstance(other, Line):
# Based on https://math.stackexchange.com/a/330329
s2_minus_s1 = other.p2 - other.p1
that = (self - other.p1).dot(s2_minus_s1) / s2_minus_s1.dot(s2_minus_s1)
tstar = np.minimum(1, np.maximum(0, that))
return (other.p1 + tstar * s2_minus_s1 - self).norm(p = 2)
elif isinstance(other, Rectangle):
if self.isInside(other): return 0
E = other.edges
return np.min([self.distanceTo(e) for e in E])
elif isinstance(other, Circle):
return np.maximum(0, self.distanceTo(other.m) - other.r)
elif isinstance(other, Ring):
d = self.distanceTo(other.m)
return np.max([r_inner - d, d - r_outer, 0])
else:
try:
return other.distanceTo(self) # do we really need to try this? Does it ever succeed?
except NameError:
raise NotImplementedError
print('Something went wrong!')
raise
'''
Given three colinear points p, q, r, the function checks if
point q lies on line segment 'pr'
'''
def onSegment(p: Point, q: Point, r: Point) -> bool:
return (q.x <= np.maximum(p.x, r.x) and q.x >= np.minimum(p.x, r.x) and
q.y <= np.maximum(p.y, r.y) and q.y >= np.minimum(p.y, r.y))
'''
To find orientation of ordered triplet (p, q, r).
The function returns following values
0 --> p, q and r are colinear
1 --> Clockwise
2 --> Counterclockwise
'''
def orientation(p: Point, q: Point, r: Point) -> int:
# See https://www.geeksforgeeks.org/orientation-3-ordered-points/ for details of below formula.
val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y)
if val == 0: return 0 # colinear
return 1 if val > 0 else 2 # clock or counterclock wise
class Line:
def __init__(self, p1: Point, p2: Point):
self.p1 = p1
self.p2 = p2
def __str__(self):
return 'Line(' + str(self.p1) + ', ' + str(self.p2) + ')'
def intersectsWith(self, other: Union['Line','Rectangle','Circle','Ring']):
if isinstance(other, Line):
p1 = self.p1
q1 = self.p2
p2 = other.p1
q2 = other.p2
# Based on https://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/
# Find the four orientations needed for general and special cases
o1 = orientation(p1, q1, p2)
o2 = orientation(p1, q1, q2)
o3 = orientation(p2, q2, p1)
o4 = orientation(p2, q2, q1)
# General case
if o1 != o2 and o3 != o4:
return True
# Special Cases
# p1, q1 and p2 are colinear and p2 lies on segment p1q1
if o1 == 0 and onSegment(p1, p2, q1): return True
# p1, q1 and q2 are colinear and q2 lies on segment p1q1
if o2 == 0 and onSegment(p1, q2, q1): return True
# p2, q2 and p1 are colinear and p1 lies on segment p2q2
if o3 == 0 and onSegment(p2, p1, q2): return True
# p2, q2 and q1 are colinear and q1 lies on segment p2q2
if o4 == 0 and onSegment(p2, q1, q2): return True
return False # Doesn't fall in any of the above cases
elif isinstance(other, Rectangle):
if self.p1.isInside(other) or self.p2.isInside(other): return True
E = other.edges
for edge in E:
if self.intersectsWith(edge): return True
return False
elif isinstance(other, Circle):
return other.m.distanceTo(self) <= other.r
elif isinstance(other, Ring):
return (other.m.distanceTo(self.p1) >= other.r_inner or other.m.distanceTo(self.p2) >= other.r_inner) and other.m.distanceTo(self) < other.r_outer
raise NotImplementedError
@property
def length(self):
return self.p1.distanceTo(self.p2)
def dot(self, other: 'Line') -> float: # assumes Line is a vector from p1 to p2
v1 = (self.p2 - self.p1)
v2 = (other.p2 - other.p1)
return v1.dot(v2)
def hasPassed(self, other: Union['Point', 'Line', 'Rectangle', 'Circle', 'Ring'], direction: Point) -> bool:
p = (self.p1 + self.p2) / 2.
return p.hasPassed(other, direction)
def distanceTo(self, other: Union['Point', 'Line', 'Rectangle', 'Circle', 'Ring']) -> float:
if isinstance(other, Point):
return other.distanceTo(self)
elif isinstance(other, Line):
if self.intersectsWith(other): return 0.
return np.min([self.p1.distanceTo(other.p1), self.p1.distanceTo(other.p2), self.p2.distanceTo(other.p1), self.p2.distanceTo(other.p2)])
elif isinstance(other, Rectangle):
if self.intersectsWith(other): return 0.
other_edges = other.edges
return np.min([self.distanceTo(e) for e in other_edges])
elif isinstance(other, Circle):
return np.maximum(0, other.m.distanceTo(self) - other.r)
elif isinstance(other, Ring):
if self.intersectsWith(other): return 0.
p1m = self.p1.distanceTo(other.m)
if p1m < other.r_inner: # the line is inside the ring
p2m = self.p2.distanceTo(other.m)
return other.r_inner - np.maximum(p1m, p2m)
else: # the line is completely outside
return np.maximum(0, other.m.distanceTo(self) - other.r_outer)
raise NotImplementedError
class Rectangle:
def __init__(self, c1: Point, c2: Point, c3: Point): # 3 points are enough to represent a rectangle
self.c1 = c1
self.c2 = c2
self.c3 = c3
self.c4 = c3 + c1 - c2
def __str__(self):
return 'Rectangle(' + str(self.c1) + ', ' + str(self.c2) + ', ' + str(self.c3) + ', ' + str(self.c4) + ')'
@property
def edges(self):
e1 = Line(self.c1, self.c2)
e2 = Line(self.c2, self.c3)
e3 = Line(self.c3, self.c4)
e4 = Line(self.c4, self.c1)
return [e1, e2, e3, e4]
@property
def corners(self):
return [self.c1, self.c2, self.c3, self.c4]
def intersectsWith(self, other: Union['Line', 'Rectangle', 'Circle', 'Ring']) -> bool:
if isinstance(other, Line):
return other.intersectsWith(self)
elif isinstance(other, Rectangle) or isinstance(other, Circle) or isinstance(other, Ring):
E = self.edges
for e in E:
if e.intersectsWith(other): return True
return False
raise NotImplementedError
def hasPassed(self, other: Union['Point', 'Line', 'Rectangle', 'Circle', 'Ring'], direction: Point) -> bool:
p = (self.c1 + self.c2 + self.c3 + self.c4) / 4.
return p.hasPassed(other, direction)
def distanceTo(self, other: Union['Point', 'Line', 'Rectangle', 'Circle', 'Ring']) -> float:
if isinstance(other, Point) or isinstance(other, Line):
return other.distanceTo(self)
elif isinstance(other, Rectangle) or isinstance(other, Circle) or isinstance(other, Ring):
if self.intersectsWith(other): return 0.
E = self.edges
return np.min([e.distanceTo(other) for e in E])
raise NotImplementedError # TODO: implement the other cases
class Circle:
def __init__(self, m: Point, r: float):
self.m = m
self.r = r
def __str__(self):
return 'Circle(' + str(self.m) + ', radius = ' + str(self.r) + ')'
def intersectsWith(self, other: Union['Line', 'Rectangle', 'Circle', 'Ring']):
if isinstance(other, Line) or isinstance(other, Rectangle):
return other.intersectsWith(self)
elif isinstance(other, Circle):
return self.m.distanceTo(other.m) <= self.r + other.r
elif isinstance(other, Ring):
return other.r_inner - self.r <= self.m.distanceTo(other.m) <= self.r + other.r_outer
raise NotImplementedError
def hasPassed(self, other: Union['Point', 'Line', 'Rectangle', 'Circle', 'Ring'], direction: Point) -> bool:
return self.m.hasPassed(other, direction)
def distanceTo(self, other: Union['Point', 'Line', 'Rectangle', 'Circle', 'Ring']) -> float:
if isinstance(other, Point) or isinstance(other, Line) or isinstance(other, Rectangle):
return other.distanceTo(self)
elif isinstance(other, Circle):
return np.maximum(0, self.m.distanceTo(other.m) - self.r - other.r)
elif isinstance(other, Ring):
if self.intersectsWith(other): return 0.
d = self.m.distanceTo(other.m)
return np.maximum(other.r_inner - d, d - other.r_outer) - self.r
raise NotImplementedError
class Ring:
def __init__(self, m: Point, r_inner: float, r_outer: float):
self.m = m
assert r_inner < r_outer
self.r_inner = r_inner
self.r_outer = r_outer
def __str__(self):
return 'Ring(' + str(self.m) + ', inner radius = ' + str(self.r_inner) + ', outer radius = ' + str(self.r_outer) + ')'
def intersectsWith(self, other: Union['Line', 'Rectangle', 'Circle', 'Ring']):
if isinstance(other, Line) or isinstance(other, Rectangle) or isinstance(other, Circle):
return other.intersectsWith(self)
elif isinstance(other, Ring):
d = self.m.distanceTo(other.m)
if d > self.r_outer + other.r_outer: return False # rings are far away
if d + self.r_outer < other.r_inner: return False # self is completely inside other
if d + other.r_outer < self.r_inner: return False # other is completely inside self
return True
raise NotImplementedError
def hasPassed(self, other: Union['Point', 'Line', 'Rectangle', 'Circle', 'Ring'], direction: Point) -> bool:
return self.m.hasPassed(other, direction)
def distanceTo(self, other: Union['Point', 'Line', 'Rectangle', 'Circle', 'Ring']) -> float:
if isinstance(other, Point) or isinstance(other, Line) or isinstance(other, Rectangle) or isinstance(other, Circle):
return other.distanceTo(self)
if isinstance(other, Ring):
if d > self.r_outer + other.r_outer: return d - self.r_outer - other.r_outer # rings are far away
if d + self.r_outer < other.r_inner: return other.r_inner - d - self.r_outer # self is completely inside other
if d + other.r_outer < self.r_inner: return self.r_inner - d - other.r_outer # other is completely inside self
return 0
raise NotImplementedError # TODO: implement the other cases