-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdemos.py
82 lines (73 loc) · 3.17 KB
/
demos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from sampling import Sampler
import algos
import numpy as np
from simulation_utils import create_env, get_feedback, run_algo
import sys
def batch(task, method, N, M, b):
if N % b != 0:
print('N must be divisible to b')
exit(0)
B = 20*b
simulation_object = create_env(task)
d = simulation_object.num_of_features
lower_input_bound = [x[0] for x in simulation_object.feed_bounds]
upper_input_bound = [x[1] for x in simulation_object.feed_bounds]
w_sampler = Sampler(d)
psi_set = []
s_set = []
inputA_set = np.random.uniform(low=2*lower_input_bound, high=2*upper_input_bound, size=(b, 2*simulation_object.feed_size))
inputB_set = np.random.uniform(low=2*lower_input_bound, high=2*upper_input_bound, size=(b, 2*simulation_object.feed_size))
for j in range(b):
input_A = inputA_set[j]
input_B = inputB_set[j]
psi, s = get_feedback(simulation_object, input_A, input_B)
psi_set.append(psi)
s_set.append(s)
i = b
while i < N:
w_sampler.A = psi_set
w_sampler.y = np.array(s_set).reshape(-1,1)
w_samples = w_sampler.sample(M)
mean_w_samples = np.mean(w_samples,axis=0)
print('w-estimate = {}'.format(mean_w_samples/np.linalg.norm(mean_w_samples)))
print('Samples so far: ' + str(i))
inputA_set, inputB_set = run_algo(method, simulation_object, w_samples, b, B)
for j in range(b):
input_A = inputA_set[j]
input_B = inputB_set[j]
psi, s = get_feedback(simulation_object, input_B, input_A)
psi_set.append(psi)
s_set.append(s)
i += b
w_sampler.A = psi_set
w_sampler.y = np.array(s_set).reshape(-1,1)
w_samples = w_sampler.sample(M)
mean_w_samples = np.mean(w_samples, axis=0)
print('w-estimate = {}'.format(mean_w_samples/np.linalg.norm(mean_w_samples)))
def nonbatch(task, method, N, M):
simulation_object = create_env(task)
d = simulation_object.num_of_features
lower_input_bound = [x[0] for x in simulation_object.feed_bounds]
upper_input_bound = [x[1] for x in simulation_object.feed_bounds]
w_sampler = Sampler(d)
psi_set = []
s_set = []
input_A = np.random.uniform(low=2*lower_input_bound, high=2*upper_input_bound, size=(2*simulation_object.feed_size))
input_B = np.random.uniform(low=2*lower_input_bound, high=2*upper_input_bound, size=(2*simulation_object.feed_size))
psi, s = get_feedback(simulation_object, input_A, input_B)
psi_set.append(psi)
s_set.append(s)
for i in range(1, N):
w_sampler.A = psi_set
w_sampler.y = np.array(s_set).reshape(-1,1)
w_samples = w_sampler.sample(M)
mean_w_samples = np.mean(w_samples,axis=0)
print('w-estimate = {}'.format(mean_w_samples/np.linalg.norm(mean_w_samples)))
input_A, input_B = run_algo(method, simulation_object, w_samples)
psi, s = get_feedback(simulation_object, input_A, input_B)
psi_set.append(psi)
s_set.append(s)
w_sampler.A = psi_set
w_sampler.y = np.array(s_set).reshape(-1,1)
w_samples = w_sampler.sample(M)
print('w-estimate = {}'.format(mean_w_samples/np.linalg.norm(mean_w_samples)))