-
Notifications
You must be signed in to change notification settings - Fork 0
/
check_bc.py
executable file
·411 lines (331 loc) · 13 KB
/
check_bc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
#!/usr/bin/env python
import numpy as np
import os
import sys
import pdb
import csv
from tqdm import tqdm
import seaborn as sns
from collections import defaultdict
from scipy.interpolate import CubicSpline, interp1d
from scipy.optimize import minimize
import vtk
from vtk.util.numpy_support import vtk_to_numpy as v2n
from vtk.util.numpy_support import numpy_to_vtk as n2v
from get_database import input_args, Database, Post, SimVascular
from vtk_functions import read_geo, write_geo
from get_bc_integrals import integrate_surfaces, integrate_bcs
from simulation_io import get_caps_db, collect_results, collect_results_db, get_dict
from compare_1d import add_image
from get_sv_project import coronary_sv_to_oned
from bc_0d import run_rcr, run_coronary
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
import matplotlib
# matplotlib.use('Agg')
def get_cycle(f, n_cycle):
return np.hstack((f, np.tile(f[1:], n_cycle - 1)))
def cont_func(time, value, n_cycle):
# repeat time for all cycles
time_cycle = time
for i in range(n_cycle):
time_cycle = np.hstack((time_cycle, time[1:] + (i + 1) * time[-1]))
# repeat value for all cycles
value_cycle = np.hstack((value, np.tile(value[1:], n_cycle)))
# create continues function
fun = lambda t: interp1d(time_cycle, value_cycle)(t)
# check if function matches origional values
assert np.sum((fun(time) - value) ** 2) < 1e-16, 'function does not interpolate data'
return fun, time_cycle, value_cycle
def run_0d_cycles(flow, time, p, distal_pressure, n_step=100, n_rcr=40, check=True):
# number of cycles from rcr time constant
if 'Rd' in p:
t_rcr = p['C'] * p['Rd']
elif 'R1' in p:
t_rcr = p['C2'] * p['R2']
else:
raise ValueError('Unknown boundary conditions')
n_cycle = np.max([int((t_rcr * n_rcr) // time[-1]), n_rcr])
# 0d time
t0 = 0.0 # best to set this as zero
tf = time[-1] * n_cycle
number_of_time_steps = n_step * n_cycle + 1
time_0d = np.linspace(t0, tf, number_of_time_steps)
# continuous inflow function
Qfunc, _, _ = cont_func(time, flow, n_cycle)
# output last cycle
t_last = time[-1] * (n_cycle - 1)
i_last = np.arange(n_step * (n_cycle - 1), n_step * n_cycle + 1, 1)
i_prev = np.arange(n_step * (n_cycle - 2), n_step * (n_cycle - 1) + 1, 1)
t_out = time_0d[i_last] - t_last
# run 0d simulation
if 'Rd' in p:
p_0d = run_rcr(Qfunc, time_0d, p, distal_pressure)
elif 'R1' in p:
_, p_v_time, p_v_pres = cont_func(distal_pressure[:, 0], distal_pressure[:, 1], 3)
p_0d = run_coronary(Qfunc, time_0d, p, p_v_time, p_v_pres, time[-1], 0.0)
else:
raise ValueError('Unknown boundary conditions')
# get last cycle
p_out = p_0d[i_last]
# check if solution is periodic
# delta_p = np.abs(np.mean(p_0d[i_last - 1] - p_0d[i_prev - 1]) / np.mean(p_0d[i_last - 1]))
if check:
delta_p = np.abs(p_out[-1] - p_out[0]) / (np.max(p_out) - np.min(p_out))
assert delta_p < 1.0e-9, 'solution not periodic. diff=' + str(delta_p)
return t_out, p_out
def compare_0d(db, geo, res, time, m):
# get boundary conditions
bc_def = db.get_bcs(geo)
if bc_def is None:
return None
inlet_time = time[m]
# get outlets
caps = get_caps_db(db, geo)
outlets = {}
for cp, br in caps.items():
if 'inflow' not in cp:
outlets[cp] = br
# initialize output dict
res_bc = defaultdict(dict)
# loop all outlets
for j, (cp, br) in enumerate(outlets.items()):
print('outlet ' + str(j+1) + '/' + str(len(outlets)))
# cap bcs
bc = bc_def['bc'][cp]
t = bc_def['bc_type'][cp]
# loop all cardiac cycles
# for cycle in tqdm(range(1, time[m + '_n_cycle'] + 1)):
for cycle in [time[m + '_n_cycle']]:
# bc inlet flow
inlet_flow = res[br]['flow'][m + '_all'][time[m + '_i_cycle_' + str(cycle)]]
# output name for pressure in this cycle
out = 'p_' + str(cycle)
# select boundary condition
p = {}
if t == 'rcr':
res_bc[br]['t'], res_bc[br][out] = run_0d_cycles(inlet_flow, inlet_time, bc, bc['Po'])
elif t == 'resistance':
res_bc[br]['t'] = inlet_time
res_bc[br][out] = bc['Po'] + bc['R'] * inlet_flow
elif t == 'coronary':
if not bc_def['coronary']:
continue
# convert coronary parameters
cor = coronary_sv_to_oned(bc)
p['R1'], p['R2'], p['R3'], p['C1'], p['C2'] = (cor['Ra1'], cor['Ra2'], cor['Rv1'], cor['Ca'], cor['Cc'])
p_v_t = bc_def['coronary'][bc['Pim']][:, 0]
p_v_p = bc_def['coronary'][bc['Pim']][:, 1]
res_bc[br]['t'], res_bc[br][out] = run_0d_cycles(inlet_flow, inlet_time, p, np.vstack((p_v_t, p_v_p)).T)
# copy last cycle
res_bc[br]['p'] = res_bc[br][out]
return res_bc
def check_bc(db, geo):
# collect results
# if plot_rerun and not os.path.exists(db.get_3d_flow_rerun(geo)):
# return
m = '3d_rerun'
# m = '0d'
# get 3d results
res, time = collect_results_db(db, geo, m)
if m not in time:
return
print('Plotting ' + geo)
# get 0d results
if not os.path.exists(db.get_bc_0D_path(geo, m)):
res_0d = compare_0d(db, geo, res, time, m)
np.save(db.get_bc_0D_path(geo, m), res_0d)
else:
res_0d = np.load(db.get_bc_0D_path(geo, m), allow_pickle=True).item()
inlet_time = time[m]
# if res_0d is None or 'p_1' not in res_0d[list(res_0d.keys())[0]]:
# return
# get outlets
caps = get_caps_db(db, geo)
outlets = {}
for cp, br in caps.items():
if 'inflow' not in cp:
outlets[cp] = br
# bounbdary condition types
bc_def = db.get_bcs(geo)
# get cap names
names = db.get_cap_names(geo)
# get numerical boundary condition time constants
# res_num = get_dict(db.get_convergence_path())[geo]
dpi = 300
if len(outlets) > 50:
dpi //= 4
# fields = ['Flow 3D', 'Pressure 3D', 'Pressure 0D']
# fields = ['Flow 3D', 'Pressure 3D', 'Pressure 0D', 'Pressure Paper']
# fields = ['Pressure 0D', 'Pressure Paper']
fields = ['Flow 3D', 'Pressure 3D']
# fields = ['Pressure 3D', 'Pressure 0D']
# fields = ['Pressure 3D', 'Pressure 0D', 'Pressure Q const']
fig, ax = plt.subplots(len(fields), len(outlets), figsize=(len(outlets) * 2 + 2, 4), dpi=dpi, sharex=True, sharey='row')
# get post-processing constants
post = Post()
n_max = 21
c_max = np.min([time[m + '_n_cycle'], n_max])
errors = []
for j, (cp, br) in enumerate(outlets.items()):
if br not in res_0d:
continue
for i, field in enumerate(fields):
f = field.split()[0].lower()
# plot settings
if len(outlets) == 1:
pos = i
elif len(fields) == 1:
pos = j
else:
pos = (i, j)
ax[pos].grid(True)
if j == 0:
ax[pos].set_ylabel(field + '\n[' + post.units[f] + ']')
ax[pos].yaxis.set_tick_params(which='both', labelleft=True)
if i == 0:
ax[pos].set_title(names[cp])# + ' (' + bc_def['bc_type'][cp].upper() + ')')
if i == len(fields) - 1:
ax[pos].set_xlabel('Time [s]')
ax[pos].set_xlim(0, inlet_time[-1])
ax[pos].xaxis.set_tick_params(which='both', labelbottom=True)
# plot bcs
for cycle in range(1, c_max + 1):
ids = field.split()[1].lower()
if ids == '3d':
x = inlet_time
y = res[br][f][m + '_all'][time[m + '_i_cycle_' + str(cycle)]]
elif ids == 'q':
inlet_flow = res[br]['flow'][m + '_all'][time[m + '_i_cycle_' + str(cycle)]]
if bc_def['bc_type'][cp] == 'rcr':
resistance = bc_def['bc'][cp]['Rp'] + bc_def['bc'][cp]['Rd']
elif bc_def['bc_type'][cp] == 'coronary':
cor = coronary_sv_to_oned(bc_def['bc'][cp])
resistance = cor['Ra1'] + cor['Ra2'] + cor['Rv1']
x = inlet_time
y = np.ones(len(x)) * np.mean(inlet_flow) * resistance
elif ids == 'paper':
if cycle == time[m + '_n_cycle']:
x = np.nan
y = np.nan
else:
tau = np.mean(res_num['tau'][f])
alpha = 1 / (np.exp(1 / tau) - 1)
p0 = res_0d[br]['p_' + str(cycle)]
p1 = res_0d[br]['p_' + str(cycle + 1)]
x = res_0d[br]['t']
y = alpha * p0 + (1 - alpha) * p1
else:
raise RuntimeError('Unknown selection ' + ids)
i_c = 1 - (cycle - 1) / (c_max - 1)
ax[pos].plot(x, y * post.convert[f], color=plt.get_cmap('coolwarm_r')(i_c))
if field == 'Pressure 3D':
x = res_0d[br]['t']
y = res_0d[br]['p']
ax[pos].plot(x, y * post.convert[f], 'k--')
# calculate error
diff = interp1d(res_0d[br]['t'], res_0d[br]['p'], fill_value='extrapolate')(inlet_time) - res[br]['pressure'][m + '_cap_last']
norm = np.max(res[br]['pressure'][m + '_cap']) - np.min(res[br]['pressure'][m + '_cap_last'])
err = np.mean(np.abs(diff)) / norm
errors += [err]
max_err = np.max(errors) * 100
max_outlet = db.get_cap_names(geo)[list(outlets.keys())[np.argmax(errors)]]
out_str = geo + ' err=' + '{:05.2f}'.format(max_err) + '% at outlet ' + max_outlet + '\n'
print(out_str)
plt.gcf().suptitle(out_str)
# save figure
# add_image(db, geo, fig)
f_out = db.get_bc_comparison_path(geo, m)
fig.savefig(f_out, bbox_inches='tight')
plt.close(fig)
# add error to log
db.add_bc_err(geo, m, max_err)
def check_first_last(db, geo):
# collect results
res, time = collect_results_db_3d_3d(db, geo)
if res is None:
return
return
def plot(db, geometries):
# read all errors
errors = get_dict(db.get_bc_err_file('3d'))
errors_re = get_dict(db.get_bc_err_file('3d_rerun'))
# color by category
colors = {'Cerebrovascular': 'k',
'Coronary': 'r',
'Aortofemoral': 'm',
'Pulmonary': 'c',
'Congenital Heart Disease': 'y',
'Aorta': 'b',
'Animal and Misc': '0.75'}
err = []
geo = []
col = []
for g in geometries:
if g in errors_re:
err += [errors_re[g]]
elif g in errors:
err += [errors[g]]
else:
continue
# err += [np.nan]
geo += [g]
col += [colors[db.get_bcs(g)['params']['deliverable_category']]]
# sort according to error
order = np.argsort(err)
order = np.argsort(geo)
geo = np.array(geo)[order]
err = np.array(err)[order]
col = np.array(col)[order]
geo_str = '['
for i in np.where(err > 0.1)[0]:
geo_str += '\'' + geo[i] + '\', '
geo_str = geo_str[:-2] + ']'
# print(geo_str)
fig1, ax1 = plt.subplots(dpi=400, figsize=(15, 6))
plt.cla()
plt.yscale('log')
ax1.bar(np.arange(len(err)), err, color=col)
ax1.yaxis.grid(True)
ax1.yaxis.set_major_formatter(mtick.PercentFormatter(xmax=100, decimals=2))
ax1.set_ylim(0.01, 100)
plt.xticks(np.arange(len(err)), geo, rotation='vertical')
plt.ylabel('Max. outlet pressure error 3D vs. 0D BC')
fname = os.path.join(db.fpath_gen, 'bc_err.png')
# plt.legend(list(colors.keys()))
fig1.savefig(fname, bbox_inches='tight')
# write to csv
with open(os.path.join(db.fpath_gen, 'bc_err.csv'), 'w', newline='') as csvfile:
writer = csv.writer(csvfile, delimiter=',')
for g, e in zip(geo, err):
writer.writerow([g, str(e)])
def compare_rcr():
params = {'Rp': 100, 'Rd': 1000, 'C': 0.001}
distal_pressure = 0
q_mean = 1
nt = 1000
nc = 10
T = 1
time = np.linspace(0, T*nc, nt*nc+1)
q_var = lambda x: q_mean + np.cos(x * 2 * np.pi / T)
q_const = lambda x: q_mean
flows = {'var': q_var, 'const': q_const}
fig1, ax1 = plt.subplots(dpi=400, figsize=(15, 6))
out = defaultdict(list)
for m, q in flows.items():
pressure = run_rcr(q, time, params, distal_pressure)
for i in range(nc):
out[m] += [np.mean(pressure[np.arange(i * nt, (i + 1) * nt + 1)])]
# pdb.set_trace()
ax1.plot(np.arange(nc), out[m], 'o--')
plt.show()
pdb.set_trace()
def main(db, geometries):
for geo in geometries:
check_bc(db, geo)
if __name__ == '__main__':
descr = 'Check RCR boundary condition of 3d simulation'
d, g, _ = input_args(descr)
main(d, g)
# plot(d, g)
# compare_rcr()