-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgeneratedialogpt2.py
212 lines (175 loc) · 6.39 KB
/
generatedialogpt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from transformers import BertTokenizerFast,GPT2LMHeadModel,GenerationConfig
from transformers import pipeline, set_seed
import torch
import gradio as gr
from gptbot import GPTBot
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
#torch.set_default_tensor_type(torch.cuda.HalfTensor)
tokenizer = BertTokenizerFast.from_pretrained("StarRing2022/MiLu-GPT", add_special_tokens=True)
model = GPT2LMHeadModel.from_pretrained("StarRing2022/MiLu-GPT",device_map='auto')
# PROMPT_FORMAT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
# Instruction:
# {instruction}
# Response:"""
# # input_ids = tokenizer(PROMPT_FORMAT.format(instruction='你是我同学吗?'), return_tensors="pt").input_ids.to("cuda")
# # out = model.generate(input_ids=input_ids)
# # answer = tokenizer.decode(out[0])
# # print(answer)
# def evaluate(instruction):
# with torch.no_grad():
# input_ids = tokenizer(PROMPT_FORMAT.format(instruction=instruction), return_tensors="pt").input_ids.to("cuda")
# out = model.generate(
# input_ids=input_ids,
# max_new_tokens=128,
# )
# answer = tokenizer.decode(out[0])
# return answer.split("response : [SEP] ")[1].split("[SEP]")[0].strip()
# gr.Interface(
# fn=evaluate,#接口函数
# inputs=[
# gr.components.Textbox(
# lines=2, label="Instruction", placeholder="聊天内容"
# ),
# ],
# outputs=[
# gr.inputs.Textbox(
# lines=5,
# label="Output",
# )
# ],
# title="ChatUni",
# description="Chat,Your Own World",
# ).launch()
#----------------------------------
# def generate_prompt(instruction, input=None):
# if input:
# return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
# ### Instruction:
# {instruction}
# ### Input:
# {input}
# ### Response:"""
# else:
# return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
# ### Instruction:
# {instruction}
# ### Response:"""
# def evaluate(
# instruction,
# input=None,
# temperature=0.1,
# top_p=0.75,
# top_k=40,
# num_beams=4,
# max_new_tokens=128,
# **kwargs,
# ):
# prompt = generate_prompt(instruction, input)
# inputs = tokenizer(prompt, return_tensors="pt")
# input_ids = inputs["input_ids"].to(device)
# generation_config = GenerationConfig(
# temperature=temperature,
# top_p=top_p,
# top_k=top_k,
# num_beams=num_beams,
# **kwargs,
# )
# with torch.no_grad():
# generation_output = model.generate(
# input_ids=input_ids,
# generation_config=generation_config,
# return_dict_in_generate=True,
# output_scores=True,
# max_new_tokens=max_new_tokens,
# )
# s = generation_output.sequences[0]
# output = tokenizer.decode(s)
# return output.split("# # # response : [SEP]")[1].split("[SEP]")[0].strip()
# gr.Interface(
# fn=evaluate,#接口函数
# inputs=[
# gr.components.Textbox(
# lines=2, label="指令", placeholder="告诉我羊驼是什么."
# ),
# gr.components.Textbox(lines=2, label="输入内容", placeholder="输入文本"),
# gr.components.Slider(minimum=0, maximum=1, value=0.1, label="随机性"),
# gr.components.Slider(minimum=0, maximum=1, value=0.75, label="注意力参数P"),
# gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="注意力参数K"),
# gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="波束搜索"),
# gr.components.Slider(
# minimum=1, maximum=2000, step=1, value=128, label="最大长度"
# ),
# ],
# outputs=[
# gr.inputs.Textbox(
# lines=5,
# label="输出内容",
# )
# ],
# title="ChatUni",
# description="Chat,Your Own World",
# ).launch()
#----------------------------------
#指令格式1
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
#指令格式2
PROMPT_FORMAT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
Instruction:
{instruction}
Response:"""
def evaluate(
instruction,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
repetition_penalty=1.0,
max_new_tokens=128,
**kwargs,
):
#prompt = generate_prompt(instruction, input)
#print(generate_prompt(instruction, input))
gptbot = GPTBot(model_name_or_path="StarRing2022/MiLu-GPT", max_history_len=3,max_len=max_new_tokens,temperature=temperature,topk=top_k,topp=top_p,repetition_penalty=repetition_penalty )
#output = gptbot.answer(PROMPT_FORMAT.format(instruction=instruction))
#print(PROMPT_FORMAT.format(instruction=instruction))
output = gptbot.answer(instruction+input)
return output.strip()
gr.Interface(
fn=evaluate,#接口函数
inputs=[
gr.components.Textbox(
lines=2, label="指令", placeholder="告诉我羊驼是什么."
),
gr.components.Textbox(lines=2, label="输入内容", placeholder="输入文本"),
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="随机性"),
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="注意力参数P"),
gr.components.Slider(minimum=0, maximum=100, step=1, value=50, label="注意力参数K"),
gr.components.Slider(minimum=1, maximum=100, step=1, value=50, label="重复惩罚参数"),
gr.components.Slider(
minimum=1, maximum=500, step=1, value=128, label="最大长度"
),
],
outputs=[
gr.inputs.Textbox(
lines=5,
label="输出内容",
)
],
title="ChatUni",
description="Chat,Your Own World",
).launch()