-
Notifications
You must be signed in to change notification settings - Fork 12
/
palDmoon.c
573 lines (516 loc) · 15.3 KB
/
palDmoon.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
/*
*+
* Name:
* palDmoon
* Purpose:
* Approximate geocentric position and velocity of the Moon
* Language:
* Starlink ANSI C
* Type of Module:
* Library routine
* Invocation:
* void palDmoon( double date, double pv[6] );
* Arguments:
* date = double (Given)
* TDB as a Modified Julian Date (JD-2400000.5)
* pv = double [6] (Returned)
* Moon x,y,z,xdot,ydot,zdot, mean equator and
* equinox of date (AU, AU/s)
* Description:
* Calculate the approximate geocentric position of the Moon
* using a full implementation of the algorithm published by
* Meeus (l'Astronomie, June 1984, p348).
* Authors:
* TIMJ: Tim Jenness (JAC, Hawaii)
* PTW: Patrick T. Wallace
* {enter_new_authors_here}
* Notes:
* - Meeus quotes accuracies of 10 arcsec in longitude, 3 arcsec in
* latitude and 0.2 arcsec in HP (equivalent to about 20 km in
* distance). Comparison with JPL DE200 over the interval
* 1960-2025 gives RMS errors of 3.7 arcsec and 83 mas/hour in
* longitude, 2.3 arcsec and 48 mas/hour in latitude, 11 km
* and 81 mm/s in distance. The maximum errors over the same
* interval are 18 arcsec and 0.50 arcsec/hour in longitude,
* 11 arcsec and 0.24 arcsec/hour in latitude, 40 km and 0.29 m/s
* in distance.
* - The original algorithm is expressed in terms of the obsolete
* timescale Ephemeris Time. Either TDB or TT can be used, but
* not UT without incurring significant errors (30 arcsec at
* the present time) due to the Moon's 0.5 arcsec/sec movement.
* - The algorithm is based on pre IAU 1976 standards. However,
* the result has been moved onto the new (FK5) equinox, an
* adjustment which is in any case much smaller than the
* intrinsic accuracy of the procedure.
* - Velocity is obtained by a complete analytical differentiation
* of the Meeus model.
* History:
* 2012-03-07 (TIMJ):
* Initial version based on a direct port of the SLA/F code.
* Adapted with permission from the Fortran SLALIB library.
* {enter_further_changes_here}
* Copyright:
* Copyright (C) 1998 Rutherford Appleton Laboratory
* Copyright (C) 2012 Science and Technology Facilities Council.
* All Rights Reserved.
* Licence:
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 3 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
* Bugs:
* {note_any_bugs_here}
*-
*/
#include "pal.h"
#include "pal1sofa.h"
#include "palmac.h"
/* Autoconf can give us -DPIC */
#undef PIC
void palDmoon( double date, double pv[6] ) {
/* Seconds per Julian century (86400*36525) */
const double CJ = 3155760000.0;
/* Julian epoch of B1950 */
const double B1950 = 1949.9997904423;
/* Earth equatorial radius in AU ( = 6378.137 / 149597870 ) */
const double ERADAU=4.2635212653763e-5;
double T,THETA,SINOM,COSOM,DOMCOM,WA,DWA,WB,DWB,WOM,
DWOM,SINWOM,COSWOM,V,DV,COEFF,EMN,EMPN,DN,FN,EN,
DEN,DTHETA,FTHETA,EL,DEL,B,DB,BF,DBF,P,DP,SP,R,
DR,X,Y,Z,XD,YD,ZD,SEL,CEL,SB,CB,RCB,RBD,W,EPJ,
EQCOR,EPS,SINEPS,COSEPS,ES,EC;
double ELP, DELP;
double EM, DEM, EMP, DEMP, D, DD, F, DF, OM, DOM, E, DESQ, ESQ, DE;
int N,I;
/*
* Coefficients for fundamental arguments
*
* at J1900: T**0, T**1, T**2, T**3
* at epoch: T**0, T**1
*
* Units are degrees for position and Julian centuries for time
*
*/
/* Moon's mean longitude */
const double ELP0=270.434164;
const double ELP1=481267.8831;
const double ELP2=-0.001133;
const double ELP3=0.0000019;
/* Sun's mean anomaly */
const double EM0=358.475833;
const double EM1=35999.0498;
const double EM2=-0.000150;
const double EM3=-0.0000033;
/* Moon's mean anomaly */
const double EMP0=296.104608;
const double EMP1=477198.8491;
const double EMP2=0.009192;
const double EMP3=0.0000144;
/* Moon's mean elongation */
const double D0=350.737486;
const double D1=445267.1142;
const double D2=-0.001436;
const double D3=0.0000019;
/* Mean distance of the Moon from its ascending node */
const double F0=11.250889;
const double F1=483202.0251;
const double F2=-0.003211;
const double F3=-0.0000003;
/* Longitude of the Moon's ascending node */
const double OM0=259.183275;
const double OM1=-1934.1420;
const double OM2=0.002078;
const double OM3=0.0000022;
/* Coefficients for (dimensionless) E factor */
const double E1=-0.002495;
const double E2=-0.00000752;
/* Coefficients for periodic variations etc */
const double PAC=0.000233;
const double PA0=51.2;
const double PA1=20.2;
const double PBC=-0.001778;
const double PCC=0.000817;
const double PDC=0.002011;
const double PEC=0.003964;
const double PE0=346.560;
const double PE1=132.870;
const double PE2=-0.0091731;
const double PFC=0.001964;
const double PGC=0.002541;
const double PHC=0.001964;
const double PIC=-0.024691;
const double PJC=-0.004328;
const double PJ0=275.05;
const double PJ1=-2.30;
const double CW1=0.0004664;
const double CW2=0.0000754;
/*
* Coefficients for Moon position
*
* Tx(N) = coefficient of L, B or P term (deg)
* ITx(N,1-5) = coefficients of M, M', D, F, E**n in argument
*/
#define NL 50
#define NB 45
#define NP 31
/*
* Longitude
*/
const double TL[NL] = {
6.28875,1.274018,.658309,.213616,-.185596,
-.114336,.058793,.057212,.05332,.045874,.041024,-.034718,-.030465,
.015326,-.012528,-.01098,.010674,.010034,.008548,-.00791,-.006783,
.005162,.005,.004049,.003996,.003862,.003665,.002695,.002602,
.002396,-.002349,.002249,-.002125,-.002079,.002059,-.001773,
-.001595,.00122,-.00111,8.92e-4,-8.11e-4,7.61e-4,7.17e-4,7.04e-4,
6.93e-4,5.98e-4,5.5e-4,5.38e-4,5.21e-4,4.86e-4
};
const int ITL[NL][5] = {
/* M M' D F n */
{ +0, +1, +0, +0, 0 },
{ +0, -1, +2, +0, 0 },
{ +0, +0, +2, +0, 0 },
{ +0, +2, +0, +0, 0 },
{ +1, +0, +0, +0, 1 },
{ +0, +0, +0, +2, 0 },
{ +0, -2, +2, +0, 0 },
{ -1, -1, +2, +0, 1 },
{ +0, +1, +2, +0, 0 },
{ -1, +0, +2, +0, 1 },
{ -1, +1, +0, +0, 1 },
{ +0, +0, +1, +0, 0 },
{ +1, +1, +0, +0, 1 },
{ +0, +0, +2, -2, 0 },
{ +0, +1, +0, +2, 0 },
{ +0, -1, +0, +2, 0 },
{ +0, -1, +4, +0, 0 },
{ +0, +3, +0, +0, 0 },
{ +0, -2, +4, +0, 0 },
{ +1, -1, +2, +0, 1 },
{ +1, +0, +2, +0, 1 },
{ +0, +1, -1, +0, 0 },
{ +1, +0, +1, +0, 1 },
{ -1, +1, +2, +0, 1 },
{ +0, +2, +2, +0, 0 },
{ +0, +0, +4, +0, 0 },
{ +0, -3, +2, +0, 0 },
{ -1, +2, +0, +0, 1 },
{ +0, +1, -2, -2, 0 },
{ -1, -2, +2, +0, 1 },
{ +0, +1, +1, +0, 0 },
{ -2, +0, +2, +0, 2 },
{ +1, +2, +0, +0, 1 },
{ +2, +0, +0, +0, 2 },
{ -2, -1, +2, +0, 2 },
{ +0, +1, +2, -2, 0 },
{ +0, +0, +2, +2, 0 },
{ -1, -1, +4, +0, 1 },
{ +0, +2, +0, +2, 0 },
{ +0, +1, -3, +0, 0 },
{ +1, +1, +2, +0, 1 },
{ -1, -2, +4, +0, 1 },
{ -2, +1, +0, +0, 2 },
{ -2, +1, -2, +0, 2 },
{ +1, -2, +2, +0, 1 },
{ -1, +0, +2, -2, 1 },
{ +0, +1, +4, +0, 0 },
{ +0, +4, +0, +0, 0 },
{ -1, +0, +4, +0, 1 },
{ +0, +2, -1, +0, 0 }
};
/*
* Latitude
*/
const double TB[NB] = {
5.128189,.280606,.277693,.173238,.055413,
.046272,.032573,.017198,.009267,.008823,.008247,.004323,.0042,
.003372,.002472,.002222,.002072,.001877,.001828,-.001803,-.00175,
.00157,-.001487,-.001481,.001417,.00135,.00133,.001106,.00102,
8.33e-4,7.81e-4,6.7e-4,6.06e-4,5.97e-4,4.92e-4,4.5e-4,4.39e-4,
4.23e-4,4.22e-4,-3.67e-4,-3.53e-4,3.31e-4,3.17e-4,3.06e-4,
-2.83e-4
};
const int ITB[NB][5] = {
/* M M' D F n */
{ +0, +0, +0, +1, 0 },
{ +0, +1, +0, +1, 0 },
{ +0, +1, +0, -1, 0 },
{ +0, +0, +2, -1, 0 },
{ +0, -1, +2, +1, 0 },
{ +0, -1, +2, -1, 0 },
{ +0, +0, +2, +1, 0 },
{ +0, +2, +0, +1, 0 },
{ +0, +1, +2, -1, 0 },
{ +0, +2, +0, -1, 0 },
{ -1, +0, +2, -1, 1 },
{ +0, -2, +2, -1, 0 },
{ +0, +1, +2, +1, 0 },
{ -1, +0, -2, +1, 1 },
{ -1, -1, +2, +1, 1 },
{ -1, +0, +2, +1, 1 },
{ -1, -1, +2, -1, 1 },
{ -1, +1, +0, +1, 1 },
{ +0, -1, +4, -1, 0 },
{ +1, +0, +0, +1, 1 },
{ +0, +0, +0, +3, 0 },
{ -1, +1, +0, -1, 1 },
{ +0, +0, +1, +1, 0 },
{ +1, +1, +0, +1, 1 },
{ -1, -1, +0, +1, 1 },
{ -1, +0, +0, +1, 1 },
{ +0, +0, -1, +1, 0 },
{ +0, +3, +0, +1, 0 },
{ +0, +0, +4, -1, 0 },
{ +0, -1, +4, +1, 0 },
{ +0, +1, +0, -3, 0 },
{ +0, -2, +4, +1, 0 },
{ +0, +0, +2, -3, 0 },
{ +0, +2, +2, -1, 0 },
{ -1, +1, +2, -1, 1 },
{ +0, +2, -2, -1, 0 },
{ +0, +3, +0, -1, 0 },
{ +0, +2, +2, +1, 0 },
{ +0, -3, +2, -1, 0 },
{ +1, -1, +2, +1, 1 },
{ +1, +0, +2, +1, 1 },
{ +0, +0, +4, +1, 0 },
{ -1, +1, +2, +1, 1 },
{ -2, +0, +2, -1, 2 },
{ +0, +1, +0, +3, 0 }
};
/*
* Parallax
*/
const double TP[NP] = {
.950724,.051818,.009531,.007843,.002824,
8.57e-4,5.33e-4,4.01e-4,3.2e-4,-2.71e-4,-2.64e-4,-1.98e-4,1.73e-4,
1.67e-4,-1.11e-4,1.03e-4,-8.4e-5,-8.3e-5,7.9e-5,7.2e-5,6.4e-5,
-6.3e-5,4.1e-5,3.5e-5,-3.3e-5,-3e-5,-2.9e-5,-2.9e-5,2.6e-5,
-2.3e-5,1.9e-5
};
const int ITP[NP][5] = {
/* M M' D F n */
{ +0, +0, +0, +0, 0 },
{ +0, +1, +0, +0, 0 },
{ +0, -1, +2, +0, 0 },
{ +0, +0, +2, +0, 0 },
{ +0, +2, +0, +0, 0 },
{ +0, +1, +2, +0, 0 },
{ -1, +0, +2, +0, 1 },
{ -1, -1, +2, +0, 1 },
{ -1, +1, +0, +0, 1 },
{ +0, +0, +1, +0, 0 },
{ +1, +1, +0, +0, 1 },
{ +0, -1, +0, +2, 0 },
{ +0, +3, +0, +0, 0 },
{ +0, -1, +4, +0, 0 },
{ +1, +0, +0, +0, 1 },
{ +0, -2, +4, +0, 0 },
{ +0, +2, -2, +0, 0 },
{ +1, +0, +2, +0, 1 },
{ +0, +2, +2, +0, 0 },
{ +0, +0, +4, +0, 0 },
{ -1, +1, +2, +0, 1 },
{ +1, -1, +2, +0, 1 },
{ +1, +0, +1, +0, 1 },
{ -1, +2, +0, +0, 1 },
{ +0, +3, -2, +0, 0 },
{ +0, +1, +1, +0, 0 },
{ +0, +0, -2, +2, 0 },
{ +1, +2, +0, +0, 1 },
{ -2, +0, +2, +0, 2 },
{ +0, +1, -2, +2, 0 },
{ -1, -1, +4, +0, 1 }
};
/* Centuries since J1900 */
T=(date-15019.5)/36525.;
/*
* Fundamental arguments (radians) and derivatives (radians per
* Julian century) for the current epoch
*/
/* Moon's mean longitude */
ELP=PAL__DD2R*fmod(ELP0+(ELP1+(ELP2+ELP3*T)*T)*T,360.);
DELP=PAL__DD2R*(ELP1+(2.*ELP2+3*ELP3*T)*T);
/* Sun's mean anomaly */
EM=PAL__DD2R*fmod(EM0+(EM1+(EM2+EM3*T)*T)*T,360.);
DEM=PAL__DD2R*(EM1+(2.*EM2+3*EM3*T)*T);
/* Moon's mean anomaly */
EMP=PAL__DD2R*fmod(EMP0+(EMP1+(EMP2+EMP3*T)*T)*T,360.);
DEMP=PAL__DD2R*(EMP1+(2.*EMP2+3*EMP3*T)*T);
/* Moon's mean elongation */
D=PAL__DD2R*fmod(D0+(D1+(D2+D3*T)*T)*T,360.);
DD=PAL__DD2R*(D1+(2.*D2+3.*D3*T)*T);
/* Mean distance of the Moon from its ascending node */
F=PAL__DD2R*fmod(F0+(F1+(F2+F3*T)*T)*T,360.);
DF=PAL__DD2R*(F1+(2.*F2+3.*F3*T)*T);
/* Longitude of the Moon's ascending node */
OM=PAL__DD2R*fmod(OM0+(OM1+(OM2+OM3*T)*T)*T,360.);
DOM=PAL__DD2R*(OM1+(2.*OM2+3.*OM3*T)*T);
SINOM=sin(OM);
COSOM=cos(OM);
DOMCOM=DOM*COSOM;
/* Add the periodic variations */
THETA=PAL__DD2R*(PA0+PA1*T);
WA=sin(THETA);
DWA=PAL__DD2R*PA1*cos(THETA);
THETA=PAL__DD2R*(PE0+(PE1+PE2*T)*T);
WB=PEC*sin(THETA);
DWB=PAL__DD2R*PEC*(PE1+2.*PE2*T)*cos(THETA);
ELP=ELP+PAL__DD2R*(PAC*WA+WB+PFC*SINOM);
DELP=DELP+PAL__DD2R*(PAC*DWA+DWB+PFC*DOMCOM);
EM=EM+PAL__DD2R*PBC*WA;
DEM=DEM+PAL__DD2R*PBC*DWA;
EMP=EMP+PAL__DD2R*(PCC*WA+WB+PGC*SINOM);
DEMP=DEMP+PAL__DD2R*(PCC*DWA+DWB+PGC*DOMCOM);
D=D+PAL__DD2R*(PDC*WA+WB+PHC*SINOM);
DD=DD+PAL__DD2R*(PDC*DWA+DWB+PHC*DOMCOM);
WOM=OM+PAL__DD2R*(PJ0+PJ1*T);
DWOM=DOM+PAL__DD2R*PJ1;
SINWOM=sin(WOM);
COSWOM=cos(WOM);
F=F+PAL__DD2R*(WB+PIC*SINOM+PJC*SINWOM);
DF=DF+PAL__DD2R*(DWB+PIC*DOMCOM+PJC*DWOM*COSWOM);
/* E-factor, and square */
E=1.+(E1+E2*T)*T;
DE=E1+2.*E2*T;
ESQ=E*E;
DESQ=2.*E*DE;
/*
* Series expansions
*/
/* Longitude */
V=0.;
DV=0.;
for (N=NL-1; N>=0; N--) { /* DO N=NL, 1, -1 */
COEFF=TL[N];
EMN=(double)(ITL[N][0]);
EMPN=(double)(ITL[N][1]);
DN=(double)(ITL[N][2]);
FN=(double)(ITL[N][3]);
I=ITL[N][4];
if (I == 0) {
EN=1.;
DEN=0.;
} else if (I == 1) {
EN=E;
DEN=DE;
} else {
EN=ESQ;
DEN=DESQ;
}
THETA=EMN*EM+EMPN*EMP+DN*D+FN*F;
DTHETA=EMN*DEM+EMPN*DEMP+DN*DD+FN*DF;
FTHETA=sin(THETA);
V=V+COEFF*FTHETA*EN;
DV=DV+COEFF*(cos(THETA)*DTHETA*EN+FTHETA*DEN);
}
EL=ELP+PAL__DD2R*V;
DEL=(DELP+PAL__DD2R*DV)/CJ;
/* Latitude */
V=0.;
DV=0.;
for (N=NB-1; N>=0; N--) { /* DO N=NB,1,-1 */
COEFF=TB[N];
EMN=(double)(ITB[N][0]);
EMPN=(double)(ITB[N][1]);
DN=(double)(ITB[N][2]);
FN=(double)(ITB[N][3]);
I=ITB[N][4];
if (I == 0 ) {
EN=1.;
DEN=0.;
} else if (I == 1) {
EN=E;
DEN=DE;
} else {
EN=ESQ;
DEN=DESQ;
}
THETA=EMN*EM+EMPN*EMP+DN*D+FN*F;
DTHETA=EMN*DEM+EMPN*DEMP+DN*DD+FN*DF;
FTHETA=sin(THETA);
V=V+COEFF*FTHETA*EN;
DV=DV+COEFF*(cos(THETA)*DTHETA*EN+FTHETA*DEN);
}
BF=1.-CW1*COSOM-CW2*COSWOM;
DBF=CW1*DOM*SINOM+CW2*DWOM*SINWOM;
B=PAL__DD2R*V*BF;
DB=PAL__DD2R*(DV*BF+V*DBF)/CJ;
/* Parallax */
V=0.;
DV=0.;
for (N=NP-1; N>=0; N--) { /* DO N=NP,1,-1 */
COEFF=TP[N];
EMN=(double)(ITP[N][0]);
EMPN=(double)(ITP[N][1]);
DN=(double)(ITP[N][2]);
FN=(double)(ITP[N][3]);
I=ITP[N][4];
if (I == 0) {
EN=1.;
DEN=0.;
} else if (I == 1) {
EN=E;
DEN=DE;
} else {
EN=ESQ;
DEN=DESQ;
}
THETA=EMN*EM+EMPN*EMP+DN*D+FN*F;
DTHETA=EMN*DEM+EMPN*DEMP+DN*DD+FN*DF;
FTHETA=cos(THETA);
V=V+COEFF*FTHETA*EN;
DV=DV+COEFF*(-sin(THETA)*DTHETA*EN+FTHETA*DEN);
}
P=PAL__DD2R*V;
DP=PAL__DD2R*DV/CJ;
/*
* Transformation into final form
*/
/* Parallax to distance (AU, AU/sec) */
SP=sin(P);
R=ERADAU/SP;
DR=-R*DP*cos(P)/SP;
/* Longitude, latitude to x,y,z (AU) */
SEL=sin(EL);
CEL=cos(EL);
SB=sin(B);
CB=cos(B);
RCB=R*CB;
RBD=R*DB;
W=RBD*SB-CB*DR;
X=RCB*CEL;
Y=RCB*SEL;
Z=R*SB;
XD=-Y*DEL-W*CEL;
YD=X*DEL-W*SEL;
ZD=RBD*CB+SB*DR;
/* Julian centuries since J2000 */
T=(date-51544.5)/36525.;
/* Fricke equinox correction */
EPJ=2000.+T*100.;
EQCOR=PAL__DS2R*(0.035+0.00085*(EPJ-B1950));
/* Mean obliquity (IAU 1976) */
EPS=PAL__DAS2R*(84381.448+(-46.8150+(-0.00059+0.001813*T)*T)*T);
/* To the equatorial system, mean of date, FK5 system */
SINEPS=sin(EPS);
COSEPS=cos(EPS);
ES=EQCOR*SINEPS;
EC=EQCOR*COSEPS;
pv[0]=X-EC*Y+ES*Z;
pv[1]=EQCOR*X+Y*COSEPS-Z*SINEPS;
pv[2]=Y*SINEPS+Z*COSEPS;
pv[3]=XD-EC*YD+ES*ZD;
pv[4]=EQCOR*XD+YD*COSEPS-ZD*SINEPS;
pv[5]=YD*SINEPS+ZD*COSEPS;
}