-
Notifications
You must be signed in to change notification settings - Fork 12
/
palPv2el.c
405 lines (345 loc) · 11.8 KB
/
palPv2el.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/*
*+
* Name:
* palPv2el
* Purpose:
* Position velocity to heliocentirc osculating elements
* Language:
* Starlink ANSI C
* Type of Module:
* Library routine
* Invocation:
* void palPv2el ( const double pv[6], double date, double pmass, int jformr,
* int *jform, double *epoch, double *orbinc,
* double *anode, double *perih, double *aorq, double *e,
* double *aorl, double *dm, int *jstat );
* Arguments:
* pv = const double [6] (Given)
* Heliocentric x,y,z,xdot,ydot,zdot of date,
* J2000 equatorial triad (AU,AU/s; Note 1)
* date = double (Given)
* Date (TT Modified Julian Date = JD-2400000.5)
* pmass = double (Given)
* Mass of the planet (Sun=1; Note 2)
* jformr = int (Given)
* Requested element set (1-3; Note 3)
* jform = int * (Returned)
* Element set actually returned (1-3; Note 4)
* epoch = double * (Returned)
* Epoch of elements (TT MJD)
* orbinc = double * (Returned)
* inclination (radians)
* anode = double * (Returned)
* longitude of the ascending node (radians)
* perih = double * (Returned)
* longitude or argument of perihelion (radians)
* aorq = double * (Returned)
* mean distance or perihelion distance (AU)
* e = double * (Returned)
* eccentricity
* aorl = double * (Returned)
* mean anomaly or longitude (radians, JFORM=1,2 only)
* dm = double * (Returned)
* daily motion (radians, JFORM=1 only)
* jstat = int * (Returned)
* status: 0 = OK
* - -1 = illegal PMASS
* - -2 = illegal JFORMR
* - -3 = position/velocity out of range
* Description:
* Heliocentric osculating elements obtained from instantaneous position
* and velocity.
* Authors:
* PTW: Pat Wallace (STFC)
* TIMJ: Tim Jenness (JAC, Hawaii)
* {enter_new_authors_here}
* Notes:
* - The PV 6-vector is with respect to the mean equator and equinox of
* epoch J2000. The orbital elements produced are with respect to
* the J2000 ecliptic and mean equinox.
* - The mass, PMASS, is important only for the larger planets. For
* most purposes (e.g. asteroids) use 0D0. Values less than zero
* are illegal.
* - Three different element-format options are supported:
*
* Option JFORM=1, suitable for the major planets:
*
* EPOCH = epoch of elements (TT MJD)
* ORBINC = inclination i (radians)
* ANODE = longitude of the ascending node, big omega (radians)
* PERIH = longitude of perihelion, curly pi (radians)
* AORQ = mean distance, a (AU)
* E = eccentricity, e
* AORL = mean longitude L (radians)
* DM = daily motion (radians)
*
* Option JFORM=2, suitable for minor planets:
*
* EPOCH = epoch of elements (TT MJD)
* ORBINC = inclination i (radians)
* ANODE = longitude of the ascending node, big omega (radians)
* PERIH = argument of perihelion, little omega (radians)
* AORQ = mean distance, a (AU)
* E = eccentricity, e
* AORL = mean anomaly M (radians)
*
* Option JFORM=3, suitable for comets:
*
* EPOCH = epoch of perihelion (TT MJD)
* ORBINC = inclination i (radians)
* ANODE = longitude of the ascending node, big omega (radians)
* PERIH = argument of perihelion, little omega (radians)
* AORQ = perihelion distance, q (AU)
* E = eccentricity, e
*
* - It may not be possible to generate elements in the form
* requested through JFORMR. The caller is notified of the form
* of elements actually returned by means of the JFORM argument:
* JFORMR JFORM meaning
*
* 1 1 OK - elements are in the requested format
* 1 2 never happens
* 1 3 orbit not elliptical
*
* 2 1 never happens
* 2 2 OK - elements are in the requested format
* 2 3 orbit not elliptical
*
* 3 1 never happens
* 3 2 never happens
* 3 3 OK - elements are in the requested format
*
* - The arguments returned for each value of JFORM (cf Note 5: JFORM
* may not be the same as JFORMR) are as follows:
*
* JFORM 1 2 3
* EPOCH t0 t0 T
* ORBINC i i i
* ANODE Omega Omega Omega
* PERIH curly pi omega omega
* AORQ a a q
* E e e e
* AORL L M -
* DM n - -
*
* where:
*
* t0 is the epoch of the elements (MJD, TT)
* T " epoch of perihelion (MJD, TT)
* i " inclination (radians)
* Omega " longitude of the ascending node (radians)
* curly pi " longitude of perihelion (radians)
* omega " argument of perihelion (radians)
* a " mean distance (AU)
* q " perihelion distance (AU)
* e " eccentricity
* L " longitude (radians, 0-2pi)
* M " mean anomaly (radians, 0-2pi)
* n " daily motion (radians)
* - means no value is set
*
* - At very small inclinations, the longitude of the ascending node
* ANODE becomes indeterminate and under some circumstances may be
* set arbitrarily to zero. Similarly, if the orbit is close to
* circular, the true anomaly becomes indeterminate and under some
* circumstances may be set arbitrarily to zero. In such cases,
* the other elements are automatically adjusted to compensate,
* and so the elements remain a valid description of the orbit.
* - The osculating epoch for the returned elements is the argument
* DATE.
*
* - Reference: Sterne, Theodore E., "An Introduction to Celestial
* Mechanics", Interscience Publishers, 1960
* History:
* 2012-03-09 (TIMJ):
* Initial version converted from SLA/F.
* Adapted with permission from the Fortran SLALIB library.
* {enter_further_changes_here}
* Copyright:
* Copyright (C) 2005 Patrick T. Wallace
* Copyright (C) 2012 Science and Technology Facilities Council.
* All Rights Reserved.
* Licence:
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 3 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
* Bugs:
* {note_any_bugs_here}
*-
*/
#include <math.h>
#include "pal1sofa.h"
#include "pal.h"
#include "palmac.h"
void palPv2el ( const double pv[6], double date, double pmass, int jformr,
int *jform, double *epoch, double *orbinc,
double *anode, double *perih, double *aorq, double *e,
double *aorl, double *dm, int *jstat ) {
/* Sin and cos of J2000 mean obliquity (IAU 1976) */
const double SE = 0.3977771559319137;
const double CE = 0.9174820620691818;
/* Minimum allowed distance (AU) and speed (AU/day) */
const double RMIN = 1e-3;
const double VMIN = 1e-8;
/* How close to unity the eccentricity has to be to call it a parabola */
const double PARAB = 1.0e-8;
double X,Y,Z,XD,YD,ZD,R,V2,V,RDV,GMU,HX,HY,HZ,
HX2PY2,H2,H,OI,BIGOM,AR,ECC,S,C,AT,U,OM,
GAR3,EM1,EP1,HAT,SHAT,CHAT,AE,AM,DN,PL,
EL,Q,TP,THAT,THHF,F;
int JF;
/* Validate arguments PMASS and JFORMR.*/
if (pmass < 0.0) {
*jstat = -1;
return;
}
if (jformr < 1 || jformr > 3) {
*jstat = -2;
return;
}
/* Provisionally assume the elements will be in the chosen form. */
JF = jformr;
/* Rotate the position from equatorial to ecliptic coordinates. */
X = pv[0];
Y = pv[1]*CE+pv[2]*SE;
Z = -pv[1]*SE+pv[2]*CE;
/* Rotate the velocity similarly, scaling to AU/day. */
XD = PAL__SPD*pv[3];
YD = PAL__SPD*(pv[4]*CE+pv[5]*SE);
ZD = PAL__SPD*(-pv[4]*SE+pv[5]*CE);
/* Distance and speed. */
R = sqrt(X*X+Y*Y+Z*Z);
V2 = XD*XD+YD*YD+ZD*ZD;
V = sqrt(V2);
/* Reject unreasonably small values. */
if (R < RMIN || V < VMIN) {
*jstat = -3;
return;
}
/* R dot V. */
RDV = X*XD+Y*YD+Z*ZD;
/* Mu. */
GMU = (1.0+pmass)*PAL__GCON*PAL__GCON;
/* Vector angular momentum per unit reduced mass. */
HX = Y*ZD-Z*YD;
HY = Z*XD-X*ZD;
HZ = X*YD-Y*XD;
/* Areal constant. */
HX2PY2 = HX*HX+HY*HY;
H2 = HX2PY2+HZ*HZ;
H = sqrt(H2);
/* Inclination. */
OI = atan2(sqrt(HX2PY2),HZ);
/* Longitude of ascending node. */
if (HX != 0.0 || HY != 0.0) {
BIGOM = atan2(HX,-HY);
} else {
BIGOM=0.0;
}
/* Reciprocal of mean distance etc. */
AR = 2.0/R-V2/GMU;
/* Eccentricity. */
ECC = sqrt(DMAX(1.0-AR*H2/GMU,0.0));
/* True anomaly. */
S = H*RDV;
C = H2-R*GMU;
if (S != 0.0 || C != 0.0) {
AT = atan2(S,C);
} else {
AT = 0.0;
}
/* Argument of the latitude. */
S = sin(BIGOM);
C = cos(BIGOM);
U = atan2((-X*S+Y*C)*cos(OI)+Z*sin(OI),X*C+Y*S);
/* Argument of perihelion. */
OM = U-AT;
/* Capture near-parabolic cases. */
if (fabs(ECC-1.0) < PARAB) ECC=1.0;
/* Comply with JFORMR = 1 or 2 only if orbit is elliptical. */
if (ECC > 1.0) JF=3;
/* Functions. */
GAR3 = GMU*AR*AR*AR;
EM1 = ECC-1.0;
EP1 = ECC+1.0;
HAT = AT/2.0;
SHAT = sin(HAT);
CHAT = cos(HAT);
/* Variable initializations to avoid compiler warnings. */
AM = 0.0;
DN = 0.0;
PL = 0.0;
EL = 0.0;
Q = 0.0;
TP = 0.0;
/* Ellipse? */
if (ECC < 1.0 ) {
/* Eccentric anomaly. */
AE = 2.0*atan2(sqrt(-EM1)*SHAT,sqrt(EP1)*CHAT);
/* Mean anomaly. */
AM = AE-ECC*sin(AE);
/* Daily motion. */
DN = sqrt(GAR3);
}
/* "Major planet" element set? */
if (JF == 1) {
/* Longitude of perihelion. */
PL = BIGOM+OM;
/* Longitude at epoch. */
EL = PL+AM;
}
/* "Comet" element set? */
if (JF == 3) {
/* Perihelion distance. */
Q = H2/(GMU*EP1);
/* Ellipse, parabola, hyperbola? */
if (ECC < 1.0) {
/* Ellipse: epoch of perihelion. */
TP = date-AM/DN;
} else {
/* Parabola or hyperbola: evaluate tan ( ( true anomaly ) / 2 ) */
THAT = SHAT/CHAT;
if (ECC == 1.0) {
/* Parabola: epoch of perihelion. */
TP = date-THAT*(1.0+THAT*THAT/3.0)*H*H2/(2.0*GMU*GMU);
} else {
/* Hyperbola: epoch of perihelion. */
THHF = sqrt(EM1/EP1)*THAT;
F = log(1.0+THHF)-log(1.0-THHF);
TP = date-(ECC*sinh(F)-F)/sqrt(-GAR3);
}
}
}
/* Return the appropriate set of elements. */
*jform = JF;
*orbinc = OI;
*anode = eraAnp(BIGOM);
*e = ECC;
if (JF == 1) {
*perih = eraAnp(PL);
*aorl = eraAnp(EL);
*dm = DN;
} else {
*perih = eraAnp(OM);
if (JF == 2) *aorl = eraAnp(AM);
}
if (JF != 3) {
*epoch = date;
*aorq = 1.0/AR;
} else {
*epoch = TP;
*aorq = Q;
}
*jstat = 0;
}