-
Notifications
You must be signed in to change notification settings - Fork 1
/
inference.py
289 lines (235 loc) · 14.2 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import sys
sys.path.append('Painter/SegGPT/SegGPT_inference')
import os, json
import argparse
import torch
import numpy as np, cv2
import torch.nn.functional as F
import torch as T
from tqdm import tqdm
from Painter.SegGPT.SegGPT_inference.models_seggpt import seggpt_vit_large_patch16_input896x448
from PIL import Image
from utils import *
IMAGENET_MEAN = np.array([0.485, 0.456, 0.406])
IMAGENET_STD = np.array([0.229, 0.224, 0.225])
COLOR_MAP = np.array([
(0, 0, 0), # Background
(255, 0, 0), # Tree
(0, 255, 255), # Rangeland
(0, 255, 0), # Bareland
(255, 255, 0), # Agric land type 1
(0, 0, 255), # Road type 1
(255, 255, 255), # Sea, lake, & pond
(255, 0, 255), # Building type 1
])
@torch.no_grad()
def run_one_image(img, tgt, model, device, mask=None):
x = torch.tensor(img)
x = torch.einsum('nhwc->nchw', x)
tgt = torch.tensor(tgt)
tgt = torch.einsum('nhwc->nchw', tgt)
if mask is None:
bool_masked_pos = torch.zeros(model.patch_embed.num_patches)
bool_masked_pos[model.patch_embed.num_patches//2:] = 1
bool_masked_pos = bool_masked_pos.unsqueeze(dim=0)
else:
bool_masked_pos = torch.tensor(mask).unsqueeze(dim=0)
valid = torch.ones_like(tgt)
seg_type = torch.zeros([valid.shape[0], 1])
feat_ensemble = 0 if len(x) > 1 else -1
_, y, mask = model(x.float().to(device), tgt.float().to(device), bool_masked_pos.to(device), valid.float().to(device), seg_type.to(device), feat_ensemble)
y = model.unpatchify(y)
y = torch.einsum('nchw->nhwc', y).detach().cpu()
output = y[0, y.shape[1]//2:, :, :]
output = torch.clip((output * IMAGENET_STD + IMAGENET_MEAN) * 255, 0, 255)
mask = mask[:, :, None].repeat(1, 1, model.patch_size**2 * 3)
mask = model.unpatchify(mask)
mask = mask.permute(0, 2, 3, 1)
mask = mask[0, mask.shape[1]//2:, :, :]
mask = mask.cpu().float()
return output, mask
def inference_image_with_crop(model, device, img_path, img2_paths, tgt2_paths, outdir, split=2):
res, hres = 448, 448
full_image = Image.open(img_path).convert("RGB").resize((1024, 1024))
row_size = full_image.size[0] // split
col_size = full_image.size[1] // split
h, w = full_image.size
final_out_color = np.zeros((h, w, 3))
final_out_label = np.zeros((h, w))
final_out_image = np.zeros((h, w, 3))
for row in range(split):
for col in range(split):
image = full_image.crop((row * row_size, col * col_size, (row + 1) * row_size, (col + 1) * col_size))
input_image = np.array(image)
image = np.array(image.resize((res, hres))) / 255.
image_batch, target_batch = [], []
for img2_path, tgt2_path in zip(img2_paths, tgt2_paths):
full_img2 = Image.open(img2_path).convert("RGB").resize((1024, 1024))
full_tgt2 = Image.open(tgt2_path).convert("RGB").resize((1024, 1024), Image.NEAREST)
for i_row in range(split):
for i_col in range(split):
img2 = full_img2.crop((i_row * row_size, i_col * col_size, (i_row + 1) * row_size, (i_col + 1) * col_size))
tgt2 = full_tgt2.crop((i_row * row_size, i_col * col_size, (i_row + 1) * row_size, (i_col + 1) * col_size))
img2 = img2.resize((res, hres))
img2 = np.array(img2) / 255.
tgt2 = tgt2.resize((res, hres), Image.NEAREST)
tgt2 = np.array(tgt2) / 255.
tgt = tgt2 # tgt is not available
tgt = np.concatenate((tgt2, tgt), axis=0)
img = np.concatenate((img2, image), axis=0)
assert img.shape == (2*res, res, 3), f'{img.shape}'
# normalize by ImageNet mean and std
img = img - IMAGENET_MEAN
img = img / IMAGENET_STD
assert tgt.shape == (2*res, res, 3), f'{img.shape}'
# normalize by ImageNet mean and std
tgt = tgt - IMAGENET_MEAN
tgt = tgt / IMAGENET_STD
image_batch.append(img)
target_batch.append(tgt)
img = np.stack(image_batch, axis=0)
tgt = np.stack(target_batch, axis=0)
torch.manual_seed(2)
output, _ = run_one_image(img, tgt, model, device)
output = F.interpolate(
output[None, ...].permute(0, 3, 1, 2),
size=[row_size, col_size],
mode='nearest',
).permute(0, 2, 3, 1)
output, label = cmap_to_lbl(output, torch.tensor(COLOR_MAP, device=output.device, dtype=output.dtype).unsqueeze(0))
output = output[0].numpy()
label = label[0].numpy()
final_out_color[col * col_size:(col + 1) * col_size, row * row_size:(row + 1) * row_size] = output
final_out_label[col * col_size:(col + 1) * col_size, row * row_size:(row + 1) * row_size] = label
final_out_image[col * col_size:(col + 1) * col_size, row * row_size:(row + 1) * row_size] = input_image
concat = np.concatenate((final_out_image, final_out_color), axis=1)
final_out_color = Image.fromarray((final_out_color).astype(np.uint8))
concat = Image.fromarray((concat).astype(np.uint8))
final_out_label = Image.fromarray((final_out_label).astype(np.uint8))
filename = os.path.basename(img_path).replace('.tif', '.png')
os.makedirs(os.path.join(outdir, 'color'), exist_ok=True)
os.makedirs(os.path.join(outdir, 'concat'), exist_ok=True)
os.makedirs(os.path.join(outdir, 'label'), exist_ok=True)
final_out_color.save(os.path.join(outdir, 'color', filename))
final_out_label.save(os.path.join(outdir, 'label', filename))
concat.save(os.path.join(outdir, 'concat', filename))
def inference_stitch(model, device, img_path, tgt_path, lbl_path, img2_paths, tgt2_paths, outdir, split=2, width=4):
# run after inference_image_with_crop
# only works for split = 2
res, hres = 448, 448
full_image = Image.open(img_path).convert('RGB').resize((1024, 1024))
full_tgt = Image.open(tgt_path).convert('RGB').resize((1024, 1024), Image.NEAREST)
full_lbl = Image.open(lbl_path).convert('L').resize((1024, 1024), Image.NEAREST)
col_size = full_image.size[0] // split
row_size = full_image.size[1] // split
w, h = full_image.size
final_out_color = np.array(full_tgt)
final_out_label = np.array(full_lbl)
crop_params = [
[(w // 4, 0, 3 * w // 4, h // 2), 0], # top middle
[(w // 4, h // 2, 3 * w // 4, h), 0], # bottom middle
[(0, h // 4, w // 2, 3 * h // 4), 1], # left middle
[(w // 2, h // 4, w, 3 * h // 4), 1], # right middle
[(w // 4, h // 4, 3 * w // 4, 3 * h // 4), 2] # center
]
for crop_param, stitch_type in crop_params:
j1, i1, j2, i2 = crop_param
assert j2 - j1 == col_size and i2 - i1 == row_size
cropped_image = full_image.crop(crop_param).resize((res, hres))
cropped_tgt = full_tgt.crop(crop_param).resize((res, hres), Image.NEAREST)
cropped_image = np.array(cropped_image.resize((res, hres))) / 255.
cropped_tgt = np.array(cropped_tgt) / 255.
image_batch, target_batch = [], []
for img2_path, tgt2_path in zip(img2_paths, tgt2_paths):
full_img2 = Image.open(img2_path).convert('RGB').resize((1024, 1024))
full_tgt2 = Image.open(tgt2_path).convert('RGB').resize((1024, 1024), Image.NEAREST)
for i_row in range(split):
for i_col in range(split):
img2 = full_img2.crop((i_row * row_size, i_col * col_size, (i_row + 1) * row_size, (i_col + 1) * col_size))
tgt2 = full_tgt2.crop((i_row * row_size, i_col * col_size, (i_row + 1) * row_size, (i_col + 1) * col_size))
img2 = img2.resize((res, hres))
img2 = np.array(img2) / 255.
tgt2 = tgt2.resize((res, hres), Image.NEAREST)
tgt2 = np.array(tgt2) / 255.
tgt = cropped_tgt
tgt = np.concatenate((tgt2, tgt), axis=0)
img = np.concatenate((img2, cropped_image), axis=0)
assert img.shape == (2*res, res, 3), f'{img.shape}'
# normalize by ImageNet mean and std
img = img - IMAGENET_MEAN
img = img / IMAGENET_STD
assert tgt.shape == (2*res, res, 3), f'{img.shape}'
# normalize by ImageNet mean and std
tgt = tgt - IMAGENET_MEAN
tgt = tgt / IMAGENET_STD
image_batch.append(img)
target_batch.append(tgt)
img = np.stack(image_batch, axis=0)
tgt = np.stack(target_batch, axis=0)
torch.manual_seed(2)
hstitch_mask = create_stitch_mask(28, 28, stitch_type, width)
output, mask = run_one_image(img, tgt, model, device, hstitch_mask)
output = F.interpolate(
output[None, ...].permute(0, 3, 1, 2),
size=[row_size, col_size],
mode='nearest',
).permute(0, 2, 3, 1)
mask = F.interpolate(
mask[None, ...].permute(0, 3, 1, 2),
size=[row_size, col_size],
mode='nearest',
).permute(0, 2, 3, 1)
output, label = cmap_to_lbl(output, torch.tensor(COLOR_MAP, device=output.device, dtype=output.dtype).unsqueeze(0))
output = output[0].numpy()
label = label[0].numpy()
mask = mask[0].numpy()
final_out_color[i1:i2, j1:j2] = output * mask + final_out_color[i1:i2, j1:j2] * (1 - mask)
final_out_label[i1:i2, j1:j2] = label * mask[:, :, 0] + final_out_label[i1:i2, j1:j2] * (1 - mask[:, :, 0])
concat = np.concatenate((np.array(full_image), np.array(full_tgt), final_out_color), axis=1)
final_out_color = Image.fromarray((final_out_color).astype(np.uint8))
final_out_label = Image.fromarray((final_out_label).astype(np.uint8))
concat = Image.fromarray((concat).astype(np.uint8))
filename = os.path.basename(img_path).replace('.tif', '.png')
os.makedirs(os.path.join(outdir, 'stitch', 'color'), exist_ok=True)
os.makedirs(os.path.join(outdir, 'stitch', 'concat'), exist_ok=True)
os.makedirs(os.path.join(outdir, 'stitch', 'label'), exist_ok=True)
final_out_color.save(os.path.join(outdir, 'stitch', 'color', filename))
final_out_label.save(os.path.join(outdir, 'stitch', 'label', filename))
concat.save(os.path.join(outdir, 'stitch', 'concat', filename))
def get_args_parser():
parser = argparse.ArgumentParser('SegGPT inference', add_help=False)
parser.add_argument('--model-path', type=str, help='path to ckpt', required=True)
parser.add_argument('--prompt-img-dir', type=str, help='path to prompt image directory', default='/disk3/steve/dataset/OpenEarthMap-FSS/trainset/images')
parser.add_argument('--prompt-label-dir', type=str, help='path to prompt colored label directory', default='/disk3/steve/dataset/OpenEarthMap-FSS/trainset/labels_color')
parser.add_argument('--dataset-dir', type=str, help='path to input image dir to be tested', default='/disk3/steve/dataset/OpenEarthMap-FSS/testset/images')
parser.add_argument('--mapping', type=str, help='path to mapping of query and prompt list', default="mappings/mapping_vit_filtered.json")
parser.add_argument('--split', type=int, help='how many to image split into (each dim)', default=2)
parser.add_argument('--stitch-width', type=int, help='width of the stitching', default=4)
parser.add_argument('--top-k', type=int, help='top-k prompts to use', default=2)
parser.add_argument('--device', type=str, help='cuda or cpu', default='cuda')
parser.add_argument('--outdir', type=str, help='path to output directory', default='./')
return parser.parse_args()
if __name__ == '__main__':
args = get_args_parser()
print(args)
model = seggpt_vit_large_patch16_input896x448()
ckpt = T.load(args.model_path, map_location='cpu')
model.load_state_dict(ckpt['model_state_dict'])
print('Checkpoint loaded')
model = model.to(args.device)
model.eval()
mapping = json.load(open(args.mapping))
for input_image in tqdm(mapping):
input = os.path.join(args.dataset_dir, input_image)
prompt = [os.path.join(args.prompt_img_dir, file) for file in mapping[input_image][:args.top_k]]
prompt_target = [os.path.join(args.prompt_label_dir, file.replace('.tif', '.png')) for file in mapping[input_image][:args.top_k]]
inference_image_with_crop(model, args.device, input, prompt, prompt_target, args.outdir, split=args.split)
# inference_image_with_crop_v2(model, args.device, input, prompt, prompt_target, args.outdir, args.top_k, split=args.split)
if args.split == 2:
tgt_path = os.path.join(args.outdir, 'color', input_image.replace('.tif', '.png'))
lbl_path = os.path.join(args.outdir, 'label', input_image.replace('.tif', '.png'))
inference_stitch(model, args.device, input, tgt_path, lbl_path, prompt, prompt_target, args.outdir, split=args.split, width=args.stitch_width)
"""
python inference.py --ckpt_path /home/steve/SegGPT-FineTune/logs/1710148218/weights/epoch15_loss0.7601_metric0.0000.pt --output_dir submission
python seggpt_inference.py --ckpt_path ../../../tuning.pt --input_image /home/steve/Datasets/OpenEarthMap-FSS/valset/images/tonga_64.tif --prompt_image /home/steve/Datasets/OpenEarthMap-FSS/valset/images/christchurch_39.tif /home/steve/Datasets/OpenEarthMap-FSS/valset/images/sechura_37.tif /home/steve/Datasets/OpenEarthMap-FSS/valset/images/kitsap_22.tif /home/steve/Datasets/OpenEarthMap-FSS/valset/images/duesseldorf_15.tif /home/steve/Datasets/OpenEarthMap-FSS/valset/images/sechura_11.tif --prompt_target /home/steve/Datasets/OpenEarthMap-FSS/valset/labels_color/christchurch_39.png /home/steve/Datasets/OpenEarthMap-FSS/valset/labels_color/sechura_37.png /home/steve/Datasets/OpenEarthMap-FSS/valset/labels_color/kitsap_22.png /home/steve/Datasets/OpenEarthMap-FSS/valset/labels_color/duesseldorf_15.png /home/steve/Datasets/OpenEarthMap-FSS/valset/labels_color/sechura_11.png --output_dir tuning
"""