-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathSteepest_descent_method.py
107 lines (103 loc) · 5.25 KB
/
Steepest_descent_method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#Install "sympy" library in your machine before running this program
from sympy import *
#Steepest descent
x,y,a,z= symbols('x y a z') #z incase you have a three variable equation
grad = [] #To store the gradient
s = [] #To store the direction of the slope
temp = [] #Temporary variable
initial = [] #To store the initial answer to check with the final
result = [] #To store the final answer
n = 0
decimals = 5 #Set the precision of your output here
variable = int(input("Enter the number of variables in the equation: "))
equa = input("Enter the expression: ")
equation = sympify(equa) #Converting the input string to a mathematical expression
precision = int(input("Answer precision ? "))
decimals = precision
if(variable == 2):
xi = float(input("Enter initial x coordinates: "))
yi = float(input("Enter initial y coordinates: "))
while(True):
n+=1
x_previous = xi
y_previous = yi
grad.append(diff(equation,x).subs([(x,xi),(y,yi)])) #To push the gradient wrt x in the list
grad.append(diff(equation,y).subs([(y,yi),(x,xi)])) #To push the gradient wrt y in the list
s.append(-grad[0]) #To push the x-coord of S-direction in the list
s.append(-grad[1]) #To push the y-coord of S-direction in the list
temp.append(xi + (a*s[0])) #To push the x-coord of xi equation in the list
temp.append(yi + (a*s[1])) #To push the y-coord of yi equation in the list
alphaEq = equation.subs([(x,temp[0]),(y,temp[1])]) #For brevity
tempEq = Eq(diff(alphaEq,a),0) #Substituting and differentiating the eq with unknown alpha and equating with 0
alpha = list(solveset(tempEq,a)) #Solving for alpha
xi = round(xi + (alpha[0]*s[0]),decimals) #Calculating the new x-coords
yi = round(yi + (alpha[0]*s[1]),decimals) #Calculating the new y-coords
result.append(diff(equation,x).subs([(x,xi),(y,yi)]))
result.append(diff(equation,y).subs([(x,xi),(y,yi)]))
print("""
Iteration no. {3}
gradient : {4}
x is : {0}
y is : {1}
a is : {2}
""".format(xi,yi,round(alpha[0],decimals),n,grad))
if((result[0]==0) and (result[1]==0)):
#print("Exit by 1") #To let the user know which condition caused it to stop
break
elif((x_previous==xi) and (y_previous==yi)):
#print("Exit by 2")
break
# elif(n>19): #Incase you want to set a limit to the number of iterations
# break
grad.clear() #Clearing all the lists
result.clear()
s.clear()
temp.clear()
elif(variable == 3):
xi = float(input("Enter initial x coordinates: "))
yi = float(input("Enter initial y coordinates: "))
zi = float(input("Enter initial z coordinates: "))
while(True):
n+=1
x_previous = xi
y_previous = yi
z_previous = zi
grad.append(diff(equation,x).subs([(x,xi),(y,yi),(z,zi)])) #To push the gradient wrt x in the list
grad.append(diff(equation,y).subs([(x,xi),(y,yi),(z,zi)])) #To push the gradient wrt y in the list
grad.append(diff(equation,z).subs([(x,xi),(y,yi),(z,zi)])) #To push the gradient wrt z in the list
s.append(-grad[0]) #To push the x-coord of S-direction in the list
s.append(-grad[1]) #To push the y-coord of S-direction in the list
s.append(-grad[2]) #To push the z-coord of S-direction in the list
temp.append(xi + (a*s[0])) #To push the x-coord of xi equation in the list
temp.append(yi + (a*s[1])) #To push the y-coord of yi equation in the list
temp.append(zi + (a*s[2])) #To push the z-coord of zi equation in the list
alphaEq = equation.subs([(x,temp[0]),(y,temp[1]),(z,temp[2])]) #For brevity
tempEq = Eq(diff(alphaEq,a),0) #Substituting and differentiating the eq with unknown alpha and equating with 0
alpha = list(solveset(tempEq,a)) #Solving for alpha
xi = round(xi + (alpha[0]*s[0]),decimals) #Calculating the new x-coords
yi = round(yi + (alpha[0]*s[1]),decimals) #Calculating the new y-coords
zi = round(zi + (alpha[0]*s[2]),decimals) #Calculating the new z-coords
result.append(diff(equation,x).subs([(x,xi),(y,yi),(z,zi)]))
result.append(diff(equation,y).subs([(x,xi),(y,yi),(z,zi)]))
result.append(diff(equation,z).subs([(x,xi),(y,yi),(z,zi)]))
print(result)
print("""
Iteration no. {4}
gradient : {5}
x is : {0}
y is : {1}
z is : {2}
a is : {3}
""".format(xi,yi,zi,round(alpha[0],decimals),n,grad))
if(((result[0]==0) and (result[1]==0)) and (result[2]==0)):
print("Exit by 1") #To let the user know which condition caused it to stop
break
elif(((x_previous==xi) and (y_previous==yi)) and (z_previous==zi)):
print("Exit by 2")
break
# elif(n>19): #Incase you want to set a limit to the number of iterations
# break
grad.clear() #Clearing all the lists
result.clear()
s.clear()
temp.clear()