-
Notifications
You must be signed in to change notification settings - Fork 0
/
an ai structure
64 lines (55 loc) · 1.93 KB
/
an ai structure
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import random
# 遗传算法的基本参数
POPULATION_SIZE = 100
MUTATION_RATE = 0.1
NUM_GENERATIONS = 10
# 代码和诗歌的范围
CODE_RANGE = (0, 255)
POEM_RANGE = ('a', 'z')
# 评估函数,用于评估代码和诗歌的质量
def evaluate_code(code):
# TODO: 实现评估函数,返回一个得分
return 0
def evaluate_poem(poem):
# TODO: 实现评估函数,返回一个得分
return 0
# 随机生成初始种群
def generate_population(size):
population = []
for i in range(size):
code = ''.join(chr(random.randint(*CODE_RANGE)) for _ in range(100))
poem = ''.join(random.choice(POEM_RANGE) for _ in range(100))
population.append((code, poem))
return population
# 选择操作,根据评估函数的得分选择优秀的个体
def selection(population):
scores = [evaluate_code(code) + evaluate_poem(poem) for code, poem in population]
selected = []
for i in range(len(population)):
p1 = random.choices(population, weights=scores)[0]
p2 = random.choices(population, weights=scores)[0]
selected.append((p1[0], p2[1]))
return selected
# 变异操作,随机改变个体的基因
def mutation(population):
mutated = []
for code, poem in population:
if random.random() < MUTATION_RATE:
new_code = ''.join(chr(random.randint(*CODE_RANGE)) for _ in range(100))
new_poem = ''.join(random.choice(POEM_RANGE) for _ in range(100))
mutated.append((new_code, new_poem))
else:
mutated.append((code, poem))
return mutated
# 主函数,运行遗传算法
def run_ga():
population = generate_population(POPULATION_SIZE)
for i in range(NUM_GENERATIONS):
population = selection(population)
population = mutation(population)
best = max(population, key=lambda x: evaluate_code(x[0]) + evaluate_poem(x[1]))
return best
# 测试
best = run_ga()
print(best[0])
print(best[1])