-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlaunch.py
executable file
·251 lines (219 loc) · 7.76 KB
/
launch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#!/usr/bin/env python3
import json
import os
import datasets as hf_datasets
import fire
file_path = "templates"
work_path = os.path.dirname(os.path.abspath(__file__))
def load_dataset(path: str):
if path.endswith(".json") or path.endswith(".jsonl"):
data = hf_datasets.load_dataset("json", data_files=path)
elif ":" in path:
split = path.split(":")
data = hf_datasets.load_dataset(split[0], split[1])
else:
data = hf_datasets.load_dataset(path)
return data
def compose_command(
base_model: str,
config: str = "moe_peft.json",
inference: bool = False,
evaluate: bool = False,
load_adapter: bool = False,
random_seed: int = 42,
cuda_device: int = None,
log_file: str = "moe_peft.log",
overwrite: bool = False,
attn_impl: str = None,
sliding_window: bool = False,
use_cache: bool = True,
quantize: str = None,
dtype: str = "bf16",
tf32: bool = False,
):
assert quantize in (None, "4bit", "8bit")
assert dtype in ("fp32", "fp16", "bf16")
command = "python moe_peft.py"
if cuda_device is not None:
command = f"CUDA_VISIBLE_DEVICES={cuda_device} " + command
command += f" --base_model {base_model}"
command += f" --config {config}"
if inference:
command += " --inference"
if evaluate:
command += " --evaluate"
if load_adapter:
command += " --load_adapter"
command += f" --seed {random_seed}"
command += f" --log_file {log_file}"
if overwrite:
command += " --overwrite"
if attn_impl is not None:
command += f" --attn_impl {attn_impl}"
if sliding_window:
command += " --sliding_window"
if not use_cache:
command += " --disable_cache"
if quantize is not None:
command += f" --load_{quantize}"
if dtype in ("fp16", "bf16"):
command += f" --{dtype}"
if tf32:
command += " --tf32"
return os.system(command)
def update_record(dict_: dict, key_, value_):
if value_ is not None:
dict_[key_] = value_
def gen_config(
# essential
template: str,
tasks: str,
# optional
adapter_name: str = None,
file_name: str = "moe_peft.json",
data_path: str = None,
multi_task: bool = False,
append: bool = False,
# default value provided by template
prompt_template: str = None,
cutoff_len: int = None,
save_step: int = None,
lr_scheduler: str = None,
warmup_steps: float = None,
learning_rate: float = None,
batch_size: int = None,
micro_batch_size: int = None,
evaluate_steps: int = None,
evaluate_batch_size: int = None,
num_epochs: int = None,
loraplus_lr_ratio: float = None,
use_dora: bool = None,
use_rslora: bool = None,
group_by_length: bool = None,
):
import moe_peft
template = f"{work_path}{os.sep}{file_path}{os.sep}{template}.json"
config_dir = f"{work_path}{os.sep}{file_name}"
with open(template, "r", encoding="utf8") as fp:
template_obj = json.load(fp)
update_record(template_obj, "cutoff_len", cutoff_len)
update_record(template_obj, "save_step", save_step)
lora_templates = template_obj["lora"]
template_obj["lora"] = []
if append:
with open(config_dir, "r", encoding="utf8") as fp:
orig_config = json.load(fp)
template_obj["lora"] = orig_config["lora"]
index = len(template_obj["lora"])
if multi_task:
task_list = [tasks]
path_list = [data_path]
else:
task_list = tasks.split(";")
path_list = (
[None] * len(task_list) if data_path is None else data_path.split(";")
)
for lora_template in lora_templates:
for task_name, data_path in zip(task_list, path_list):
lora_config = lora_template.copy()
if multi_task:
lora_config["name"] = f"multi_task_{index}"
lora_config["task_name"] = task_name
elif task_name not in moe_peft.tasks.task_dict:
try:
load_dataset(task_name)
except:
raise RuntimeError(f"Task name '{task_name}' not exist.")
lora_config["name"] = f"casual_{index}"
lora_config["task_name"] = "casual"
lora_config["data"] = task_name
lora_config["prompt"] = "alpaca"
else:
lora_config["name"] = (
f"{task_name.split(':')[-1].replace('-', '_')}_{index}"
)
lora_config["task_name"] = task_name
if adapter_name is not None:
lora_config["name"] = f"{adapter_name}_{index}"
update_record(lora_config, "data", data_path)
update_record(lora_config, "prompt", prompt_template)
update_record(lora_config, "scheduler_type", lr_scheduler)
update_record(lora_config, "warmup_steps", warmup_steps)
update_record(lora_config, "lr", learning_rate)
update_record(lora_config, "batch_size", batch_size)
update_record(lora_config, "micro_batch_size", micro_batch_size)
update_record(lora_config, "evaluate_steps", evaluate_steps)
update_record(lora_config, "evaluate_batch_size", evaluate_batch_size)
update_record(lora_config, "num_epochs", num_epochs)
update_record(lora_config, "loraplus_lr_ratio", loraplus_lr_ratio)
update_record(lora_config, "use_dora", use_dora)
update_record(lora_config, "use_rslora", use_rslora)
update_record(lora_config, "group_by_length", group_by_length)
template_obj["lora"].append(lora_config)
index += 1
with open(config_dir, "w") as f:
json.dump(template_obj, f, indent=4)
print(f"Configuration file saved to {config_dir}")
def avail_tasks():
import moe_peft
print("Available task names:")
for name in moe_peft.tasks.task_dict.keys():
print(f" {name}")
print("These tasks can be trained and evaluated automatically using MoE-PEFT.")
def show_help():
print(
"""
Launcher of MoE-PEFT
Usage: python launch.py COMMAND [ARGS...]
Command:
gen generate a configuration from template
run start a task with existed configuration
avail List all available tasks
help Show help information
Arguments of gen:
--template lora, mixlora, etc.
--tasks task names separate by ';'
--adapter_name default is task name
--file_name default is 'moe_peft.json'
--data_path path to input data
--multi_task multi-task training
--append append to existed config
--prompt_template [alpaca]
--cutoff_len
--save_step
--warmup_steps
--learning_rate
--loraplus_lr_ratio
--batch_size
--micro_batch_size
--evaluate_batch_size
--num_epochs
--use_dora
--use_rslora
--group_by_length
Arguments of run:
--base_model model name or path
--config [moe_peft.json]
--load_adapter [false]
--random_seed [42]
--cuda_device [0]
--log_file [moe_peft.log]
--overwrite [false]
--attn_impl [eager]
--sliding_window [false]
--use_cache [true]
--quantize [none], 4bit, 8bit
--dtype [bf16], fp16, fp32
--tf32 [false]
"""
)
command_map = {
"gen": gen_config,
"run": compose_command,
"avail": avail_tasks,
"help": show_help,
}
def main(command: str = "help", *args, **kwargs):
command_map[command](*args, **kwargs)
if __name__ == "__main__":
fire.Fire(main)