-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdata.py
202 lines (162 loc) · 6.8 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#!/usr/bin/env python3
import numpy as np
np.random.seed(1)
import random
random.seed(1)
import tensorflow as tf
tf.set_random_seed(1)
import os
import skimage.io as io
from PIL import Image
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from keras.preprocessing.image import ImageDataGenerator
def make_dir(path):
"""Make directory."""
if not os.path.exists(path):
os.makedirs(path)
def build_train_val(train_path, val_path, val_size=0.2, seed=1):
"""Build training and validation set images.
Arguments:
train_path {str} -- path of training set
val_path {str} -- path of validation set
Keyword Arguments:
val_size {float} -- size of validation set (default: {0.2})
seed {int} -- random seed (default: {1})
"""
# Rotate and Flip -> 8-fold dataset
for i in range(1, 101):
im = Image.open(os.path.join(train_path, 'images', 'satImage_%.3d.png'%i))
ma = Image.open(os.path.join(train_path, 'groundtruth', 'satImage_%.3d.png'%i))
im_f = im.transpose(Image.FLIP_LEFT_RIGHT)
io.imsave(os.path.join(train_path, 'images', 'satImage_%.3d_f.png'%i), np.array(im_f))
ma_f = ma.transpose(Image.FLIP_LEFT_RIGHT)
io.imsave(os.path.join(train_path, 'groundtruth', 'satImage_%.3d_f.png'%i), np.array(ma_f))
for angle in [90, 180, 270]:
im_r = im.rotate(angle)
io.imsave(os.path.join(train_path, 'images', 'satImage_%.3d_%.3d.png'%(i, angle)), np.array(im_r))
im_f_r = im_f.rotate(angle)
io.imsave(os.path.join(train_path, 'images', 'satImage_%.3d_f_%.3d.png'%(i, angle)), np.array(im_f_r))
ma_r = ma.rotate(angle)
io.imsave(os.path.join(train_path, 'groundtruth', 'satImage_%.3d_%.3d.png'%(i, angle)), np.array(ma_r))
ma_f_r = ma_f.rotate(angle)
io.imsave(os.path.join(train_path, 'groundtruth', 'satImage_%.3d_f_%.3d.png'%(i, angle)), np.array(ma_f_r))
# Get all images's name
train_val_images = os.listdir(os.path.join(train_path, 'images'))
# Split image into train and validation set
train_images, val_images = train_test_split(train_val_images, test_size=val_size, random_state=seed)
# Build new folders for validation set
make_dir(val_path)
make_dir(os.path.join(val_path, 'images'))
make_dir(os.path.join(val_path, 'groundtruth'))
# Move validation images to new folders
for im in val_images:
os.rename(os.path.join(train_path, 'images', im), os.path.join(val_path, 'images', im))
os.rename(os.path.join(train_path, 'groundtruth', im), os.path.join(val_path, 'groundtruth', im))
def preprocess_mask(mask):
"""Preprocessing function for masks."""
mask = mask/255
mask[mask > 0.5] = 1
mask[mask <= 0.5] = 0
return mask
def preprocess_img(img):
"""Preprocessing function for images."""
return img/255
def trainvalGenerator(batch_size, aug_dict,
train_path, val_path,
image_folder = 'images', mask_folder = 'groundtruth',
train_dir = None, val_dir = None,
target_size = (400,400), seed = 1):
"""Generator for training and validaton set.
Arguments:
batch_size {int} -- number of images in each batch
aug_dict {dict} -- dictionary of data augmentation parameters
train_path {str} -- path of the training set
val_path {str} -- path of the validation set
image_folder {str} -- image folder's name (default: {"images"})
mask_folder {str} -- mask folder's name (default: {"groundtruth"})
train_dir {str} -- if not None, path to save training set (default: {None})
val_dir {str} -- if not None, path to save validation set (default: {None})
target_size {tuple} -- size of targe images (default: {(400,400)})
seed {int} -- random seed (default: {1})
Returns:
(trainGen, valGen) -- tuple of genators for training and validation set
"""
# Train
if train_dir: make_dir(train_dir)
image_dict = aug_dict.copy()
image_dict["preprocessing_function"] = preprocess_img
image_datagen = ImageDataGenerator(**image_dict)
mask_dict = aug_dict.copy()
mask_dict["preprocessing_function"] = preprocess_mask
mask_datagen = ImageDataGenerator(**mask_dict)
image_generator_train = image_datagen.flow_from_directory(
train_path,
classes = [image_folder],
class_mode = None,
color_mode = "rgb",
target_size = target_size,
batch_size = batch_size,
save_to_dir = train_dir,
save_prefix = "image",
seed = seed)
mask_generator_train = mask_datagen.flow_from_directory(
train_path,
classes = [mask_folder],
class_mode = None,
color_mode = "grayscale",
target_size = target_size,
batch_size = batch_size,
save_to_dir = train_dir,
save_prefix = "mask",
seed = seed)
# Validation
if val_dir: make_dir(val_dir)
image_datagen = ImageDataGenerator(preprocessing_function=preprocess_img)
mask_datagen = ImageDataGenerator(preprocessing_function=preprocess_mask)
image_generator_val = image_datagen.flow_from_directory(
val_path,
classes = [image_folder],
class_mode = None,
color_mode = "rgb",
target_size = target_size,
batch_size = batch_size,
save_to_dir = val_dir,
save_prefix = "image",
seed = seed+1,
shuffle = False
)
mask_generator_val = mask_datagen.flow_from_directory(
val_path,
classes = [mask_folder],
class_mode = None,
color_mode = "grayscale",
target_size = target_size,
batch_size = batch_size,
save_to_dir = val_dir,
save_prefix = "mask",
seed = seed+1,
shuffle = False
)
return zip(image_generator_train, mask_generator_train), zip(image_generator_val, mask_generator_val)
def testGenerator(test_path, num_image = 50):
"""Generator for test set.
Arguments:
test_path {set} -- path of the test set
num_image {int} -- number of images in the test set (default: {50})
"""
for i in range(1, num_image+1):
img = io.imread(os.path.join(test_path, "test_%d"%i, "test_%d.png"%i))
img = img / 255
img = np.reshape(img,(1,)+img.shape)
yield img
def save_result(save_path, npyfile):
"""Save predicted images to path.
Arguments:
save_path {str} -- path of the folder to save
npyfile {numpy.ndarray} -- numpy array of the predict images
"""
make_dir(save_path)
for i, item in enumerate(npyfile):
img = item[:,:,0]
io.imsave(os.path.join(save_path, '%.3d.png'%(i+1)), img)