forked from cmranieri/MarmosetModel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGA_utils.py
132 lines (109 loc) · 4.15 KB
/
GA_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import os
from collections import defaultdict
import re
from bisect import bisect_left
from scipy.integrate import simps
from sklearn.cluster import KMeans, AgglomerativeClustering
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_samples, silhouette_score
import matplotlib.pyplot as plt
# Integrates freq_data in the interval [a,b]
def calc_power_band(lfp_fft, lfp_f, a, b):
res = list()
a_ = bisect_left(lfp_f, a)
b_ = bisect_left(lfp_f, b)
# Integrate for each channel
for ch in lfp_fft:
res.append( simps( ch[a_:b_], lfp_f[a_:b_] ) )
return np.array(res)
def get_data( filename ):
with open( filename ) as f:
filerows = list()
new_row = ''
for row in f.readlines():
new_row += row
if ']' in row:
new_row = re.sub( '[\n,\[\]]','',new_row )
new_row = new_row.split()
filerows.append( new_row )
new_row = ''
filerows = np.array( filerows, dtype=np.float32 )
return filerows
def build_dict( data ):
data_dict = defaultdict( list )
for row in data:
data_dict[ int( row[0] ) ].append( row[1:] )
return data_dict
def get_fitness( data ):
data_dict = build_dict( data )
best = list(); mean = list();
best_genotype = list()
for gen in sorted( data_dict.keys() ):
all_fits = np.array( data_dict[ gen ] )[ :, 1 ]
best.append( all_fits[ 0 ] )
mean.append ( np.mean( all_fits ) )
best_genotype = np.array(data_dict[ gen ])[ 0 ]
return best_genotype, best, mean
def load_all_genotypes():
means = list()
bests = list()
bests_genotypes = list()
count = 0
for filename in os.listdir( 'results' ):
if not re.match( 'inspyred\-individuals\-file.*\.csv', filename ): continue
print(filename)
data = get_data( os.path.join( 'results', filename ) )
best_genotype, best, mean = get_fitness( data )
bests_genotypes.append( best_genotype )
means.append( mean )
bests.append( best )
count += 1
bests_genotypes = np.array( bests_genotypes )
bests_genotypes = bests_genotypes[ (-bests_genotypes[:,1]).argsort() ]
fits_bestg = bests_genotypes[ :, 1 ]
bests_genotypes = bests_genotypes[ :, 2: ]
return bests_genotypes, fits_bestg, bests, means
def get_clusters( genotypes, default=False, n_clusters=2 ):
if default:
clusters = default_clusters
else:
kmeans = KMeans( n_clusters=n_clusters, random_state=20, max_iter=3000, tol=1e-12 ).fit( genotypes )
clusters = kmeans.labels_
return clusters
def get_ordered_cluster( genotypes, clusters, cluster_id ):
sil = silhouette_samples( genotypes, clusters )
ordered_idx = np.argsort( - sil )
idx = np.where( clusters[ ordered_idx ] == cluster_id )[0]
return genotypes[ ordered_idx ][ idx ]
def get_targets_animal( pd = True,
dir_fft = '/home/caetano/datasets/lfp/fft' ):
cwd = os.getcwd()
if pd: os.chdir( os.path.join( dir_fft, 'pd' ) )
else: os.chdir( os.path.join( dir_fft, 'healthy' ) )
lfp_f = np.load( '../lfp_f.npy' )
data = list()
# Load all models from the "results" directory
for filename in os.listdir():
if not re.match( '.*\.npy', filename ): continue
# [ b, f, t ]
trial = np.load( filename )
# [ [ t, f ] ]
data += list( np.transpose( trial, [ 0, 2, 1 ] ) )
# [ f, t, b ]
data = np.transpose( data, [ 2, 1, 0 ] )
fft = np.zeros( data.shape[:-1] )
coefs = list()
for b_fft in np.transpose( data, [2,0,1] ):
denominator = calc_power_band( b_fft, lfp_f, 0, 51 )
alpha = calc_power_band( b_fft, lfp_f, 8, 14 )
beta = calc_power_band( b_fft, lfp_f, 13, 31 )
betaH = calc_power_band( b_fft, lfp_f, 30, 51 )
coefs.append( ( alpha + beta + betaH ) / denominator )
print( 'COEFS', np.nanmean(coefs, axis=0) )
os.chdir( cwd )
return np.nanmean( coefs, axis=0 )
if __name__ == '__main__':
get_targets_animal()
#genotypes,_,_,_ = load_all_genotypes()
#get_clusters( genotypes )