-
Notifications
You must be signed in to change notification settings - Fork 49
/
main_run.py
262 lines (214 loc) · 11.3 KB
/
main_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Load Libraries
from glob import glob
from functools import reduce
import os
import sys
import yaml
import shutil
from tqdm import tqdm
import pandas as pd
import pprint
import utils
import pre_train
from model_param import model_parameter
from tensorflow.keras.applications import EfficientNetB3, EfficientNetB4, EfficientNetB5, EfficientNetB6, EfficientNetB7
from tensorflow.keras import layers
from tensorflow import keras
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, CSVLogger
from tensorflow.python.keras.utils.data_utils import Sequence
from tensorflow.keras import backend as K
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score
import numpy as np
import albumentations as A
from ImageDataAugmentor.image_data_augmentor import ImageDataAugmentor
from azureml.core import Workspace, Dataset
from azureml.core.compute import ComputeTarget, ComputeInstance
if __name__ == '__main__':
# Load Azure subscription Detail
# Subscription detail for Instance one
azure_auth_stream = open("Azure_outh_settings_INSTANCE_1.yml", 'r')
# Subscription detail for Instance two
#azure_auth_stream = open("Azure_outh_settings_INSTANCE_2.yml", 'r')
azure_settings = yaml.load(azure_auth_stream, yaml.SafeLoader)
## Change working Directory
os.chdir('../')
print("\nCurrent Working Directory: ", os.getcwd())
# Azure subscription detail
subscription_id = azure_settings['subscription_id']
resource_group = azure_settings['resource_group']
workspace_name = azure_settings['workspace_name']
workspace = Workspace(subscription_id, resource_group, workspace_name)
print("\nAzure Workspace Name: ", workspace.name)
print("Azure Workspace Resource Group: ", workspace.resource_group)
# Initialise Azure Instance
try:
instance = ComputeInstance(workspace = workspace, name = azure_settings['instance_name'])
# Get Status
print('Azure ML Instance is {}.\n'.format(instance.get_status().state))
except:
print("An exception occurred while initialising the Azure ML Compute")
sys.exit()
# Select model to train
# We have model2, model10, model16 and model12 model available
model_config = 'model10'
# Get the model parameters
selected_model = model_parameter(model_config)
# Define Model Log and Plot files
log_path = "./runs/"
os.makedirs(log_path, exist_ok = True)
plot_path = "./plot/"
os.makedirs(plot_path, exist_ok = True)
##################### Define path for Training and Testing Data
train_path = "./{0}x{0}/".format(selected_model['input_image_size'])
test_path = "./{0}x{0}_test/".format(selected_model['input_image_size'])
save_model_path = "./saveModel/"
os.makedirs(save_model_path, exist_ok = True)
##################### Get Training and Testing Labels from Azure Instance
train_label = Dataset.get_by_name(workspace, name='train_2020_and_2019_with_9_Labels')
test_label = Dataset.get_by_name(workspace, name='test_2020_no_PateintDetail')
label = train_label.to_pandas_dataframe()
test_csv = test_label.to_pandas_dataframe()
# Append Image extension and file path to train and test CSV
absolute_path_train = os.path.abspath(train_path)
label = utils.append_path(label, absolute_path_train)
absolute_path_test = os.path.abspath(test_path)
test_csv = utils.append_path(test_csv, absolute_path_test)
##################### Hyper Parameter
hyper_param = {
'seed': 42,
'image_size': selected_model['resize'], # resize image
'backbone_model': selected_model['backbone'], # Pretrained model name
'early_stop': 10,
'num_class': selected_model['target'],
'train_batch_size': selected_model['train_batch_size'], # Train Batch Size
'test_batch_size': 1, # Testing set batch size
'validation_batch_size': selected_model['validation_batch_size'], # Validation Batch Size
'epoch': selected_model['epochs'],
'warmup_epoch': 1,
'learning_rate_base': selected_model['initial_lr'], # Base learning rate after warmup.
'warmup_learning_rate': selected_model['initial_lr'], # Warmup learning rate
'training_sample_count': label.shape[0], # Number of training sample
'save_model': selected_model['savedModelByName'], # save model name
'save_final_model': selected_model['saveFinalModelBy'] # Save final trained model in Tensorflow Format
}
image_resize = (hyper_param['image_size'], hyper_param['image_size'])
image_shape = image_resize + (3, )
# Total training steps in Warmup
total_steps = int(hyper_param['epoch'] * hyper_param['training_sample_count'] / hyper_param['train_batch_size'])
# Compute the number of warmup batches.
warmup_steps = int(hyper_param['warmup_epoch'] * hyper_param['training_sample_count'] / hyper_param['train_batch_size'])
# Print Hyper parameter
if selected_model['print_hyper_parameter']:
print("\n####################### Hyper Parameter #################################\n")
pprint.pprint(hyper_param)
print('\nImage Shape: {}'.format(image_shape))
print('Total training steps in Warmup: {}'.format(total_steps))
print('Number of Warmup Batch: {}\n'.format(warmup_steps))
print("\nTrain Label shape: ", label.shape)
print("Test Label shape: ", test_csv.shape)
########################### Train model
# Create the Learning rate scheduler.
warm_up_lr = utils.WarmUpCosineDecayScheduler(learning_rate_base = hyper_param['learning_rate_base'],
total_steps = total_steps,
warmup_learning_rate = hyper_param['warmup_learning_rate'],
warmup_steps = warmup_steps,
hold_base_rate_steps = 0)
# Initialise Pre-train Model
model = pre_train.EffNet(input_size = image_shape, num_classess = hyper_param['num_class'], \
pretrained_model = hyper_param['backbone_model'], \
lr_rate = hyper_param['learning_rate_base'], \
print_trainable_layers = selected_model['print_trainable_layers'],\
print_model_summary = selected_model['print_model_summary'])
# Preprocess and Augment Image for train, test and validation set.
transform_train, transform_val, transform_test = \
pre_train.augment_images(hyper_param['image_size'])
# Prepare train, validation Generator
train_generator, validation_generator = pre_train.data_generator(seed = hyper_param['seed'],\
transforms_train = transform_train, transforms_val = transform_val, label = label, \
train_path = train_path, image_resize = image_resize, train_batch_size = selected_model['train_batch_size'], \
validation_batch_size = selected_model['validation_batch_size'])
# Visualise preprocess and augmented data
if selected_model['visualise_augmented_data']:
# Get Train set
train_generator.show_data()
# Get validation set
validation_generator.show_data()
## Define Callbacks
# Define Early Stopping on validation loss
es = EarlyStopping(monitor='val_loss', mode = 'min', patience = hyper_param['early_stop'],\
verbose = 1, restore_best_weights = True)
# Save model after each epoch
ck = ModelCheckpoint(save_model_path + hyper_param['save_model'], monitor='val_loss', \
verbose = 1, save_best_only = False, save_weights_only= False, mode='auto')
# Save logs to CSV
# append=False -> overwrite existing file.
logs = CSVLogger(log_path + selected_model['log_by'], separator=",", append=False)
# Callback list
call_backs = [warm_up_lr, ck, logs]
# Get Train and validation step size
STEP_SIZE_TRAIN = train_generator.n//train_generator.batch_size
STEP_SIZE_VALID = validation_generator.n//validation_generator.batch_size
start_training = input("Do you want to start training the model? [y]es OR [n]o: ")
# Start the training process is the 'yes' input is received from the terminal
if start_training == 'y':
print('\n\n---------------- Staring the Training Process... --------------- ')
# Train the model
history = pre_train.train_model(model = model, train_generator = train_generator, epoch = hyper_param['epoch'], \
train_batch_size = hyper_param['train_batch_size'], validation_generator = validation_generator, \
validation_batch_size = hyper_param['validation_batch_size'], train_step = STEP_SIZE_TRAIN, \
valid_step = STEP_SIZE_VALID, callback = call_backs)
print("\n ----------------- Model is trained --------------------------")
else:
print("Training is cancelled.....\nTerminating Python...")
sys.exit()
# Plot Training and validation loss
print("\n------ Saving Training and Validation Plot --------")
# Training and validation: accuracy & loss
utils.save_plot(history = history, \
save_dir = plot_path + selected_model['save_plot_name'])
############################ Predict on Testing Set
test_datagen = ImageDataAugmentor(
augment = transform_test,
preprocess_input = None,
seed = hyper_param['seed'])
# Define test generator
test_generator = test_datagen.flow_from_dataframe(
dataframe = test_csv,
directory = test_path,
x_col = 'image',
target_size = image_resize,
class_mode = None,
batch_size = hyper_param['test_batch_size'],
shuffle = False,
validate_filenames = False)
# Get Test steps
STEP_SIZE_TEST = test_generator.n//test_generator.batch_size
test_generator.reset()
# predict on Testset
print("\n------ Predicting on Testset --------")
prediction = model.predict(test_generator, steps = STEP_SIZE_TEST, verbose = 1)
predicted_class_indices = np.argmax(prediction, axis=1)
# Map the predicted labels with their unique ids such as filenames.
labels = (train_generator.class_indices)
labels = dict((v,k) for k,v in labels.items())
predictions = [labels[k] for k in predicted_class_indices]
# Save the prediction ot CSV File
filenames = test_generator.filenames
results = pd.DataFrame({"Filename":filenames,
"Predictions":predictions})
prediction_path = "./prediction/"
os.makedirs(prediction_path, exist_ok = True)
results.to_csv(prediction_path + selected_model['prediction_csv_name'] + ".csv", index=False)
##### Save Trained Model
print("\n ------------ Saving the Trained model ------------------------------------")
final_model_path = save_model_path + '{}/'.format(hyper_param['save_final_model'])
os.makedirs(final_model_path, exist_ok = True)
model.save(final_model_path, save_format="tf", include_optimizer = True)
print("""\n---------------------- Completed Model Training ---------------------------\n
------------------------- Stopping the Azure Instance ------------------------""")
# Stopping ComputeInstance will stop the billing meter and persist the state on the disk.
# Available Quota will not be changed with this operation.
instance.stop(wait_for_completion=True, show_output=True)