Our segmentation code is developed on top of MMSegmentation v0.20.2.
Install MMSegmentation v0.20.2.
# recommended environment: torch1.9 + cuda11.1
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install mmcv-full==1.4.2 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
pip install timm==0.4.12
pip install mmdet==2.22.0 # for Mask2Former
pip install mmsegmentation==0.20.2
ln -s ../detection/ops ./
cd ops & sh make.sh # compile deformable attention
ADE20K val
Method | Backbone | Pretrain | Lr schd | Crop Size | mIoU(SS/MS) | #Param | Config | Ckpt | Log |
---|---|---|---|---|---|---|---|---|---|
UperNet | ViT-CoMer-T | DeiT-T | 160k | 512 | 43.5/- | 38.7M | config | ckpt | log |
UperNet | ViT-CoMer-S | DeiT-S | 160k | 512 | 46.5/- | 61.4M | config | ckpt | log |
UperNet | ViT-CoMer-B | DeiT-S | 160k | 512 | 48.8/- | 144.7M | - | - | - |
COCO-Stuff-164K
Method | Backbone | Pretrain | Lr schd | Crop Size | mIoU(SS/MS) | #Param | Config | Ckpt | Log |
---|---|---|---|---|---|---|---|---|---|
Mask2Former | ViT-CoMer-L | BEiTv2-L | 80k | 896 | 52.7/- | 633.6M | config | ckpt | log |
To evaluate ViT-CoMer-T + UperNet (512) on ADE20k val on a single node with 8 gpus run:
sh test.sh
To train ViT-CoMer-T + UperNet on ADE20k on a single node with 8 gpus run:
sh train.sh