-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathhand_detector.py
104 lines (80 loc) · 3.72 KB
/
hand_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import cv2
import argparse
import numpy as np
from scipy.ndimage.filters import gaussian_filter
import torch
import torch.nn.functional as F
from entity import params
from models.HandNet import HandNet
class HandDetector(object):
def __init__(self, weights_file):
print('Loading HandNet...')
self.model = HandNet()
self.model.load_state_dict(torch.load(weights_file))
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.model = self.model.to(self.device)
def detect(self, hand_img, fast_mode=False, hand_type="right"):
if hand_type == "left":
hand_img = cv2.flip(hand_img, 1)
hand_img_h, hand_img_w, _ = hand_img.shape
resized_image = cv2.resize(hand_img, (params["hand_inference_img_size"], params["hand_inference_img_size"]))
x_data = np.array(resized_image[np.newaxis], dtype=np.float32).transpose(0, 3, 1, 2) / 256 - 0.5
x_data = torch.tensor(x_data).to(self.device)
x_data.requires_grad = False
with torch.no_grad():
hs = self.model(x_data)
heatmaps = F.interpolate(hs[-1], (hand_img_h, hand_img_w), mode='bilinear', align_corners=True).cpu().numpy()[0]
if hand_type == "left":
heatmaps = cv2.flip(heatmaps.transpose(1, 2, 0), 1).transpose(2, 0, 1)
keypoints = self.compute_peaks_from_heatmaps(heatmaps)
return keypoints
def compute_peaks_from_heatmaps(self, heatmaps):
keypoints = []
for i in range(heatmaps.shape[0] - 1):
heatmap = gaussian_filter(heatmaps[i], sigma=params['gaussian_sigma'])
max_value = heatmap.max()
if max_value > params['hand_heatmap_peak_thresh']:
coords = np.array(np.where(heatmap==max_value)).flatten().tolist()
keypoints.append([coords[1], coords[0], max_value]) # x, y, conf
else:
keypoints.append(None)
return keypoints
def draw_hand_keypoints(orig_img, hand_keypoints, left_top):
orig_img = cv2.cvtColor(orig_img, cv2.COLOR_BGR2RGB)
img = orig_img.copy()
left, top = left_top
finger_colors = [
(0, 0, 255),
(0, 255, 255),
(0, 255, 0),
(255, 0, 0),
(255, 0, 255),
]
for i, finger_indices in enumerate(params["fingers_indices"]):
for finger_line_index in finger_indices:
keypoint_from = hand_keypoints[finger_line_index[0]]
keypoint_to = hand_keypoints[finger_line_index[1]]
if keypoint_from:
keypoint_from_x, keypoint_from_y, _ = keypoint_from
cv2.circle(img, (keypoint_from_x + left, keypoint_from_y + top), 3, finger_colors[i], -1)
if keypoint_to:
keypoint_to_x, keypoint_to_y, _ = keypoint_to
cv2.circle(img, (keypoint_to_x + left, keypoint_to_y + top), 3, finger_colors[i], -1)
if keypoint_from and keypoint_to:
cv2.line(img, (keypoint_from_x + left, keypoint_from_y + top), (keypoint_to_x + left, keypoint_to_y + top), finger_colors[i], 1)
return img
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Face detector')
parser.add_argument('weights', help='weights file path')
parser.add_argument('--img', '-i', help='image file path')
args = parser.parse_args()
# load model
hand_detector = HandDetector(args.weights)
# read image
img = cv2.imread(args.img)
# inference
hand_keypoints = hand_detector.detect(img, hand_type="right")
# draw and save image
img = draw_hand_keypoints(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), hand_keypoints, (0, 0))
print('Saving result into result.png...')
cv2.imwrite('result.png', img)