Skip to content

Latest commit

 

History

History
62 lines (43 loc) · 2.79 KB

README.md

File metadata and controls

62 lines (43 loc) · 2.79 KB

Meta Reinforcement Learning Notebooks

This Repository contains codes related to FL-RL Project. The complete codes and notebooks will be published soon.

The purpose of this project is to implement and test the PyTorch codes of Meta reinforcement Learning approaches from scratch.

Requirements

Content

  • Trust Region Policy Optimization
  • MAML A2C
  • MAML TRPO
  • MAML PPO
  • ANIL
  • SNAIL
  • Reptile

Experiments

Half Cheetah Environment

Training for 300 iterations.

plot1

  • TRPO-MAML trained model output

  • After 3 TRPO Update steps on forward task

  • After 3 TRPO Update steps on backward task

Ant Environment

Training for 900 iterations.

plot2

  • TRPO-MAML trained model output

  • After 5 TRPO Update steps on forward task

  • After 5 TRPO Update steps on backward task

References

  1. Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. 34th Int. Conf. Mach. Learn. ICML 2017 3, 1856–1868 (2017).
  2. Raghu, A., Raghu, M., Bengio, S. & Vinyals, O. Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML. 1–21 (2019).
  3. Mishra, N., Rohaninejad, M., Chen, X. & Abbeel, P. A Simple Neural Attentive Meta-Learner. 6th Int. Conf. Learn. Represent. ICLR 2018 - Conf. Track Proc. 1–17 (2017).
  4. Schulman, J., Levine, S., Moritz, P., Jordan, M. I. & Abbeel, P. Trust Region Policy Optimization. 32nd Int. Conf. Mach. Learn. ICML 2015 3, 1889–1897 (2015).
  5. Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal Policy Optimization Algorithms. 1–12 (2017).