-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathfusion.py
executable file
·114 lines (90 loc) · 5.47 KB
/
fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
"""This source code is from Vis-MVSNet (https://github.com/jzhangbs/Vis-MVSNet)"""
import torch
import torch.nn.functional as F
from typing import List
def get_pixel_grids(height, width):
x_coord = (torch.arange(width, dtype=torch.float32).cuda() + 0.5).repeat(height, 1)
y_coord = (torch.arange(height, dtype=torch.float32).cuda() + 0.5).repeat(width, 1).t()
ones = torch.ones_like(x_coord)
indices_grid = torch.stack([x_coord, y_coord, ones], dim=-1).unsqueeze(-1) # hw31
return indices_grid
def bin_op_reduce(lst: List, func):
result = lst[0]
for i in range(1, len(lst)):
result = func(result, lst[i])
return result
def idx_img2cam(idx_img_homo, depth, cam): # nhw31, n1hw -> nhw41
idx_cam = cam[:, 1:2, :3, :3].unsqueeze(1).inverse() @ idx_img_homo # nhw31
idx_cam = idx_cam / (idx_cam[..., -1:, :] + 1e-9) * depth.permute(0, 2, 3, 1).unsqueeze(4) # nhw31
idx_cam_homo = torch.cat([idx_cam, torch.ones_like(idx_cam[..., -1:, :])], dim=-2) # nhw41
# FIXME: out-of-range is 0,0,0,1, will have valid coordinate in world
return idx_cam_homo
def idx_cam2world(idx_cam_homo, cam): # nhw41 -> nhw41
idx_world_homo = cam[:, 0:1, ...].unsqueeze(1).inverse() @ idx_cam_homo # nhw41
idx_world_homo = idx_world_homo / (idx_world_homo[..., -1:, :] + 1e-9) # nhw41
return idx_world_homo
def idx_world2cam(idx_world_homo, cam): # nhw41 -> nhw41
idx_cam_homo = cam[:, 0:1, ...].unsqueeze(1) @ idx_world_homo # nhw41
idx_cam_homo = idx_cam_homo / (idx_cam_homo[..., -1:, :] + 1e-9) # nhw41
return idx_cam_homo
def idx_cam2img(idx_cam_homo, cam): # nhw41 -> nhw31
idx_cam = idx_cam_homo[..., :3, :] / (idx_cam_homo[..., 3:4, :] + 1e-9) # nhw31
idx_img_homo = cam[:, 1:2, :3, :3].unsqueeze(1) @ idx_cam # nhw31
idx_img_homo = idx_img_homo / (idx_img_homo[..., -1:, :] + 1e-9)
return idx_img_homo
def project_img(src_img, dst_depth, src_cam, dst_cam, height=None, width=None): # nchw, n1hw -> nchw, n1hw
if height is None: height = src_img.size()[-2]
if width is None: width = src_img.size()[-1]
dst_idx_img_homo = get_pixel_grids(height, width).unsqueeze(0) # nhw31
dst_idx_cam_homo = idx_img2cam(dst_idx_img_homo, dst_depth, dst_cam) # nhw41
dst_idx_world_homo = idx_cam2world(dst_idx_cam_homo, dst_cam) # nhw41
dst2src_idx_cam_homo = idx_world2cam(dst_idx_world_homo, src_cam) # nhw41
dst2src_idx_img_homo = idx_cam2img(dst2src_idx_cam_homo, src_cam) # nhw31
warp_coord = dst2src_idx_img_homo[..., :2, 0] # nhw2
warp_coord[..., 0] /= width
warp_coord[..., 1] /= height
warp_coord = (warp_coord * 2 - 1).clamp(-1.1, 1.1) # nhw2
in_range = bin_op_reduce(
[-1 <= warp_coord[..., 0], warp_coord[..., 0] <= 1, -1 <= warp_coord[..., 1], warp_coord[..., 1] <= 1],
torch.min).to(src_img.dtype).unsqueeze(1) # n1hw
warped_img = F.grid_sample(src_img, warp_coord, mode='bilinear', padding_mode='zeros', align_corners=True)
return warped_img, in_range
def prob_filter(ref_prob, prob_thresh, greater=True): # n31hw -> n1hw
mask = None
for i, p in enumerate(prob_thresh):
if mask is None:
mask = (ref_prob[:, [i]] > p)
else:
mask = mask & (ref_prob[:, [i]] > p)
#mask = ref_prob > prob_thresh if greater else ref_prob < prob_thresh
return mask
def get_reproj(ref_depth, srcs_depth, ref_cam, srcs_cam): # n1hw, nv1hw -> n1hw
n, v, _, h, w = srcs_depth.size()
srcs_depth_f = srcs_depth.view(n * v, 1, h, w)
srcs_cam_f = srcs_cam.view(n * v, 2, 4, 4)
ref_depth_r = ref_depth.unsqueeze(1).repeat(1, v, 1, 1, 1).view(n * v, 1, h, w)
ref_cam_r = ref_cam.unsqueeze(1).repeat(1, v, 1, 1, 1).view(n * v, 2, 4, 4)
idx_img = get_pixel_grids(h, w).unsqueeze(0) # 1hw31
srcs_idx_cam = idx_img2cam(idx_img, srcs_depth_f, srcs_cam_f) # Nhw41
srcs_idx_world = idx_cam2world(srcs_idx_cam, srcs_cam_f) # Nhw41
srcs2ref_idx_cam = idx_world2cam(srcs_idx_world, ref_cam_r) # Nhw41
srcs2ref_idx_img = idx_cam2img(srcs2ref_idx_cam, ref_cam_r) # Nhw31
srcs2ref_xyd = torch.cat([srcs2ref_idx_img[..., :2, 0], srcs2ref_idx_cam[..., 2:3, 0]], dim=-1).permute(0, 3, 1,
2) # N3hw
reproj_xyd_f, in_range_f = project_img(srcs2ref_xyd, ref_depth_r, srcs_cam_f, ref_cam_r) # N3hw, N1hw
reproj_xyd = reproj_xyd_f.view(n, v, 3, h, w)
in_range = in_range_f.view(n, v, 1, h, w)
return reproj_xyd, in_range
def vis_filter(ref_depth, reproj_xyd, in_range, img_dist_thresh, depth_thresh, vthresh):
n, v, _, h, w = reproj_xyd.size()
xy = get_pixel_grids(h, w).permute(3, 2, 0, 1).unsqueeze(1)[:, :, :2] # 112hw
dist_masks = (reproj_xyd[:, :, :2, :, :] - xy).norm(dim=2, keepdim=True) < img_dist_thresh # nv1hw
depth_masks = (ref_depth.unsqueeze(1) - reproj_xyd[:, :, 2:, :, :]).abs() < (
torch.max(ref_depth.unsqueeze(1), reproj_xyd[:, :, 2:, :, :]) * depth_thresh) # nv1hw
masks = bin_op_reduce([in_range, dist_masks.to(ref_depth.dtype), depth_masks.to(ref_depth.dtype)],
torch.min) # nv1hw
mask = masks.sum(dim=1) >= (vthresh - 1.1) # n1hw
return masks, mask
def ave_fusion(ref_depth, reproj_xyd, masks):
ave = ((reproj_xyd[:, :, 2:, :, :] * masks).sum(dim=1) + ref_depth) / (masks.sum(dim=1) + 1) # n1hw
return ave