-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathExperiment_ReutersTopic.py
150 lines (117 loc) · 4.61 KB
/
Experiment_ReutersTopic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
__author__ = "Yinchong Yang"
__copyright__ = "Siemens AG, 2017"
__licencse__ = "MIT"
__version__ = "0.1"
"""
MIT License
Copyright (c) 2017 Siemens AG
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
"""
An MLP where the first layer can be replaced by TT_Layer.
With current hyper-parameter settings we have:
With TT_Layer:
Runtime per epoch: 2-3 seconds
Runtime in total (with potential early stopping): 0:02:33
Number of parameters: 9600
AUROC: 0.956452509027
AUPRC: 0.510159794093
Accuracy: 0.776936776492
Without TT_Layer:
Runtime per epoch: 20-23 seconds
Runtime in total (with potential early stopping): 0:12:11
Number of parameters: 512000
AUROC: 0.954760401576
AUPRC: 0.548228866191
Accuracy: 0.788067675868
Compression factor: 0.01875
"""
import numpy as np
np.random.seed(11111986)
import datetime
# TT Layers
from TTLayer import TT_Layer
# Keras
from keras.datasets import reuters
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Input, BatchNormalization
from keras.models import Model
from keras.optimizers import *
from keras.regularizers import l2
from keras.utils import np_utils
from keras.preprocessing.text import Tokenizer
from sklearn.metrics import roc_auc_score, average_precision_score, accuracy_score
max_words = 1000
batch_size = 16
(X_train, y_train), (X_test, y_test) = reuters.load_data(nb_words=max_words, test_split=0.2)
nb_classes = np.max(y_train)+1
tokenizer = Tokenizer(nb_words=max_words)
X_train = tokenizer.sequences_to_matrix(X_train, mode='binary')
X_test = tokenizer.sequences_to_matrix(X_test, mode='binary')
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
col_shuffle = np.random.choice(range(X_train.shape[1]), X_train.shape[1], False)
X_train = X_train[:, col_shuffle]
X_test = X_test[:, col_shuffle]
use_TT = False
input = Input(shape=(max_words, ))
if use_TT:
h = TT_Layer(tt_input_shape=[10, 10, 10], tt_output_shape=[8, 8, 8], tt_ranks=[1, 10, 10, 1],
ortho_init=True, activation='relu')(input)
else:
h = Dense(output_dim=512, activation='relu')(input)
h = BatchNormalization()(h)
output = Dense(output_dim=nb_classes, activation='softmax', kernel_regularizer=l2(1e-1))(h)
model = Model(input, output)
model.compile(optimizer=Adam(3e-4), loss='categorical_crossentropy', metrics=['accuracy'])
maxIter = 50
loss = np.zeros((maxIter,))
val_loss = np.zeros((maxIter,))
earlystop_thresh = .01
earlystop_steps = 5
best_val = np.Inf
earlystop_prop = 0.05
earlystop_count = 0
start = datetime.datetime.now()
for l in range(maxIter):
print 'iter ' + str(l)
history = model.fit(X_train, Y_train, epochs=1, batch_size=batch_size,
verbose=2, validation_split=0.2)
loss[l] = history.history['loss'][0]
val_loss[l] = history.history['val_loss'][0]
if val_loss[l] < best_val:
best_val = val_loss[l]
earlystop_count = 0
else:
if ( val_loss[l] / best_val -1 > earlystop_prop):
earlystop_count += 1
if earlystop_count == earlystop_steps:
print 'Early stopped after ' + str(l) + ' iterations!'
break
if l>0 and l % 10 == 0:
score = model.evaluate(X_test, Y_test, batch_size=batch_size, verbose=2)
print('Test score:', score[0])
print('Test accuracy:', score[1])
stop = datetime.datetime.now()
# score = model.evaluate(X_test, Y_test, batch_size=batch_size, verbose=2)
# print('Test score:', score[0])
# print('Test accuracy:', score[1])
print stop - start
Y_pred = model.predict(X_test)
print roc_auc_score(Y_test, Y_pred)
print average_precision_score(Y_test, Y_pred)
print accuracy_score(Y_test.argmax(1), Y_pred.argmax(1))