You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Light weight hyperparameter tuning for streaming scenarios
"Hyperparameter tuning (or optimization) is often treated as a manual task where experienced users define a subset of hyperparameters and their corresponding range of possible values to be tested exhaustively (Grid Search), randomly (Random Search) or according to some other criteria. The brute force approach of trying all possible combinations of hyperparameters and their values is time-consuming but can be efficiently executed in parallel in a batch setting. However, it can be difficult to emulate this approach in an evolving streaming scenario. A naive approach is to separate an initial set of instances from the first instances seen and perform an offline tuning of the model hyperparameters on them. Nevertheless, this makes a strong assumption that even if the concept drifts the selected hyperparameters’ values will remain optimal. The challenge is to design an approach that incorporate the hyperparameter tuning as part of the continual learning process, which might involve data preprocessing, drift detection, drift recovery, and others."[1].
The aim of this work is to show how two simple and lightweight approaches (H-NEIGHBORS and H-STEP) are competitive with the well-known Successive Halving algorithm (SHA) and its random version (RSHA). The results show this competitiveness in terms of classification performance, being our approaches less processing time-consuming and less memory-consuming (RAM-Hours).
Three experiments have been carried out:
with a sliding window size of 50 and a short grid of parameters
with a sliding window size of 300 and a short grid of parameters, and
with a sliding window size of 50 and a large grid of parameters.
[1] Gomes, H. M., Read, J., Bifet, A., Barddal, J. P., & Gama, J. (2019). Machine learning for streaming data: state of the art, challenges, and opportunities. ACM SIGKDD Explorations Newsletter, 21(2), 6-22.
Data generation
The datasets can be generated with the file "data_gen_v0.py" (see source_code folder). In the VARIABLES section of the file, the variable length_dataset set the number of instances that will be included in the stream. The variable change_width set the width of the drift, being 1 for abrupt drifts, and larger values for more gradual ones. The variable datas is a list of all datasets considered for generation. And path_data set the place where the datasets (in csv format) will be placed in your computer.
In case you need to generate other datasets, it is very simple. You can modify the function data_preparation, and follow the guidelines of the river framework (https://riverml.xyz/latest/).
Under the folder "datasets" you can find the ones used for this research.
(We have used Python 3)
Replicating the experiments
The experiments can be replicated by using the file "icdm2021_v0.py" (see source_code folder). In the VARIABLES section of the file, first we find the variables that correspond to the grid for the Hoeffding Tree. Here we can use the short or the large mode. Next we can set the scoring (scoring), the testing size for the "train_test_split" process (tst_size), and the number of repetitions (runs) for the experiment with each dataset. Also the window_size. Next we can configure the number of iterations in the search process of H-NEIGHBORS and H-STEP (iterations_neighs, iterations_direct). The parameter for the Successive Halving approaches (Halving or SHA, and Random Halving or RSHA) are eta, budget, n_models_sh_random, and budget_random. Finally, there are the variables for the reading of the data, and the name of the datasets themselves.
Once the process has finishes, we can have the results in pkl files. Under the folder "results" you can find the ones produced by this research in each of the 3 experiments mentioned at the begining.
(We have used Python 3)
Packages and dependencies
Developments in Python 3. We have used the following libraries/packages: pandas, warnings, traceback, collections, timeit, river, numpy, random, pickle, psutil, and itertools.
Results
Mean metrics in 25 runs for Window size=50 and short grid:
Dataset: agrawal_0_1
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.772+-0.014
0.798+-0.035
0.776+-0.022
0.793+-0.032
Processing Time
6.7+-0.1
6.7+-0.1
1.4+-0.1
1.4+-0.1
RAM-Hours
8.9e-04+-1.4e-05
0.0e+00+-0.0e+00
5.3e-05+-4.0e-06
6.0e-06+-0.0e+00
Dataset: agrawal_1_2
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.699+-0.029
0.646+-0.097
0.592+-0.054
0.626+-0.084
Processing Time
6.9+-0.1
7.0+-0.1
1.5+-0.0
1.6+-0.0
RAM-Hours
1.1e-04+-1.0e-06
1.0e-06+-0.0e+00
6.9e-05+-3.0e-06
0.0e+00+-0.0e+00
Dataset: agrawal_2_3
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.684+-0.069
0.753+-0.071
0.706+-0.069
0.724+-0.096
Processing Time
6.9+-0.4
7.1+-0.4
1.4+-0.0
1.4+-0.0
RAM-Hours
3.5e-04+-3.4e-05
1.6e-04+-1.6e-05
2.5e-05+-1.0e-06
4.0e-06+-0.0e+00
Dataset: agrawal_3_4
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.768+-0.011
0.769+-0.013
0.767+-0.012
0.771+-0.015
Processing Time
6.5+-0.0
6.6+-0.0
1.4+-0.0
1.4+-0.0
RAM-Hours
1.3e-04+-1.0e-06
1.0e-06+-0.0e+00
0.0e+00+-0.0e+00
0.0e+00+-0.0e+00
Dataset: agrawal_4_5
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.732+-0.013
0.747+-0.048
0.734+-0.014
0.759+-0.034
Processing Time
7.2+-0.3
7.3+-0.3
1.6+-0.1
1.7+-0.1
RAM-Hours
0.0e+00+-0.0e+00
3.0e-05+-3.0e-06
1.4e-04+-6.0e-06
3.0e-06+-0.0e+00
Dataset: agrawal_5_6
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.773+-0.015
0.781+-0.029
0.779+-0.024
0.780+-0.024
Processing Time
6.6+-0.1
6.7+-0.1
1.5+-0.1
1.6+-0.1
RAM-Hours
3.3e-04+-4.0e-06
1.0e-06+-0.0e+00
8.5e-05+-6.0e-06
5.0e-06+-0.0e+00
Dataset: agrawal_6_7
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.895+-0.008
0.895+-0.010
0.895+-0.009
0.897+-0.010
Processing Time
6.1+-0.3
6.2+-0.3
1.1+-0.0
1.2+-0.0
RAM-Hours
2.7e-04+-2.2e-05
0.0e+00+-0.0e+00
2.3e-05+-1.0e-06
0.0e+00+-0.0e+00
Dataset: agrawal_7_8
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.903+-0.001
0.884+-0.013
0.908+-0.004
0.901+-0.009
Processing Time
6.7+-0.1
6.8+-0.1
1.5+-0.0
1.5+-0.0
RAM-Hours
1.1e-04+-3.0e-06
3.0e-05+-1.0e-06
6.0e-06+-0.0e+00
0.0e+00+-0.0e+00
Dataset: agrawal_8_9
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.907+-0.005
0.907+-0.006
0.907+-0.006
0.907+-0.006
Processing Time
4.9+-0.0
5.0+-0.0
1.0+-0.0
1.1+-0.0
RAM-Hours
3.8e-05+-0.0e+00
5.0e-06+-0.0e+00
1.0e-06+-0.0e+00
0.0e+00+-0.0e+00
Dataset: mixed
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.861+-0.025
0.835+-0.064
0.834+-0.062
0.839+-0.053
Processing Time
4.7+-0.1
4.7+-0.1
1.1+-0.0
1.1+-0.0
RAM-Hours
5.0e-05+-1.0e-06
0.0e+00+-0.0e+00
7.0e-06+-0.0e+00
0.0e+00+-0.0e+00
Dataset: randomRBF
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.802+-0.039
0.798+-0.044
0.801+-0.039
0.793+-0.048
Processing Time
7.0+-0.1
7.1+-0.0
1.5+-0.0
1.5+-0.0
RAM-Hours
1.5e-04+-1.0e-06
2.0e-06+-0.0e+00
6.0e-06+-0.0e+00
0.0e+00+-0.0e+00
Dataset: sea_0_1
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.907+-0.009
0.901+-0.022
0.905+-0.012
0.890+-0.025
Processing Time
4.5+-0.1
4.6+-0.1
1.0+-0.0
1.0+-0.0
RAM-Hours
6.0e-06+-0.0e+00
0.0e+00+-0.0e+00
8.0e-06+-0.0e+00
4.0e-06+-0.0e+00
Dataset: sea_1_2
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.903+-0.018
0.900+-0.025
0.901+-0.024
0.901+-0.022
Processing Time
4.6+-0.1
4.7+-0.1
1.0+-0.0
1.1+-0.0
RAM-Hours
9.4e-05+-4.0e-06
5.2e-05+-2.0e-06
3.4e-05+-1.0e-06
2.0e-06+-0.0e+00
Dataset: sea_2_3
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.914+-0.009
0.908+-0.016
0.895+-0.037
0.901+-0.024
Processing Time
4.6+-0.0
4.6+-0.0
1.0+-0.0
1.0+-0.0
RAM-Hours
1.8e-04+-1.0e-06
1.3e-05+-0.0e+00
5.0e-06+-0.0e+00
2.0e-06+-0.0e+00
Dataset: stagger_0_1
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.859+-0.116
0.859+-0.117
0.860+-0.117
0.855+-0.121
Processing Time
5.8+-0.1
5.9+-0.1
1.2+-0.0
1.3+-0.0
RAM-Hours
4.4e-05+-1.0e-06
2.0e-06+-0.0e+00
7.0e-05+-4.0e-06
1.0e-06+-0.0e+00
Dataset: stagger_1_2
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.963+-0.005
0.963+-0.005
0.958+-0.015
0.932+-0.047
Processing Time
5.6+-0.1
5.7+-0.1
1.1+-0.1
1.2+-0.1
RAM-Hours
3.2e-05+-1.0e-06
2.1e-05+-1.0e-06
1.1e-05+-1.0e-06
0.0e+00+-0.0e+00
Dataset: sine_0_1
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.864+-0.019
0.888+-0.046
0.871+-0.043
0.900+-0.036
Processing Time
3.8+-0.1
3.9+-0.1
0.9+-0.1
1.0+-0.1
RAM-Hours
2.0e-06+-0.0e+00
0.0e+00+-0.0e+00
2.0e-06+-0.0e+00
0.0e+00+-0.0e+00
Dataset: sine_1_2
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.835+-0.015
0.881+-0.036
0.876+-0.024
0.866+-0.027
Processing Time
3.8+-0.0
3.8+-0.0
0.9+-0.0
0.9+-0.0
RAM-Hours
8.0e-06+-0.0e+00
2.0e-06+-0.0e+00
1.0e-06+-0.0e+00
0.0e+00+-0.0e+00
Dataset: sine_2_3
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.852+-0.018
0.845+-0.056
0.848+-0.035
0.855+-0.031
Processing Time
3.7+-0.0
3.7+-0.0
0.9+-0.0
0.9+-0.0
RAM-Hours
1.3e-05+-0.0e+00
0.0e+00+-0.0e+00
2.0e-06+-0.0e+00
0.0e+00+-0.0e+00
Dataset: image_segments
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.701+-0.012
0.689+-0.039
0.682+-0.012
0.663+-0.032
Processing Time
8.1+-5.2
8.3+-5.3
4.2+-0.6
4.4+-0.6
RAM-Hours
1.3e-03+-1.1e-03
2.5e-05+-3.1e-05
6.9e-05+-1.8e-05
3.0e-06+-1.0e-06
Dataset: phising
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.748+-0.011
0.757+-0.033
0.779+-0.008
0.774+-0.022
Processing Time
3.1+-2.8
3.2+-2.8
1.5+-0.0
1.5+-0.0
RAM-Hours
1.7e-05+-1.9e-05
3.0e-06+-7.0e-06
4.0e-06+-0.0e+00
0.0e+00+-0.0e+00
Mean results for all datasets:
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
$0.826\pm0.022$
$0.829\pm0.039$
$0.823\pm0.031$
$0.825\pm0.038$
Processing Time
$5.6\pm0.5$
$5.7\pm0.5$
$1.4\pm0.1$
$1.4\pm0.1$
RAM-Hours
$2.0e-04\pm5.9e-05$
$1.7e-05\pm2.9e-06$
$3.0e-05\pm2.1e-06$
$1.4e-06\pm4.8e-08$
Nemenyi test:
For Prequential acc.:
For Processing time:
For RAM-Hours:
Mean metrics in 25 runs for Window size=300 and short grid
Dataset: agrawal_0_1
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.760+-0.014
0.764+-0.018
0.745+-0.052
0.703+-0.056
Processing Time
43.7+-0.1
44.1+-0.1
9.6+-0.2
10.0+-0.2
RAM-Hours
1.1e-02+-1.0e-05
2.2e-03+-5.0e-06
1.8e-04+-5.0e-06
1.0e-06+-0.0e+00
Dataset: agrawal_1_2
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.702+-0.033
0.703+-0.037
0.628+-0.083
0.669+-0.078
Processing Time
45.5+-0.7
45.8+-0.7
9.6+-0.2
10.0+-0.2
RAM-Hours
3.4e-03+-1.1e-04
3.7e-04+-1.1e-05
8.7e-04+-1.8e-05
3.6e-04+-1.3e-05
Dataset: agrawal_2_3
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.721+-0.044
0.725+-0.052
0.718+-0.056
0.708+-0.061
Processing Time
44.6+-1.4
44.9+-1.4
9.8+-0.6
10.2+-0.6
RAM-Hours
1.4e-03+-5.5e-05
1.6e-04+-8.0e-06
2.4e-03+-2.0e-04
3.0e-06+-0.0e+00
Dataset: agrawal_3_4
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.713+-0.015
0.717+-0.021
0.711+-0.016
0.716+-0.025
Processing Time
45.5+-0.3
45.8+-0.3
8.8+-0.3
9.1+-0.4
RAM-Hours
2.4e-03+-1.5e-05
0.0e+00+-0.0e+00
5.6e-05+-3.0e-06
0.0e+00+-0.0e+00
Dataset: agrawal_4_5
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.697+-0.003
0.688+-0.021
0.740+-0.039
0.717+-0.040
Processing Time
41.2+-1.2
41.5+-1.2
9.8+-0.2
10.2+-0.3
RAM-Hours
2.5e-04+-1.0e-05
6.0e-06+-0.0e+00
2.8e-04+-3.0e-06
1.4e-04+-3.0e-06
Dataset: agrawal_5_6
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.739+-0.009
0.726+-0.016
0.726+-0.017
0.725+-0.015
Processing Time
42.2+-1.9
42.4+-1.9
8.6+-0.6
8.9+-0.6
RAM-Hours
2.9e-03+-1.5e-04
0.0e+00+-0.0e+00
0.0e+00+-0.0e+00
1.0e-06+-0.0e+00
Dataset: agrawal_6_7
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.829+-0.005
0.830+-0.007
0.829+-0.006
0.829+-0.006
Processing Time
33.7+-1.4
33.9+-1.4
6.9+-0.2
7.2+-0.2
RAM-Hours
4.4e-03+-3.4e-04
4.7e-05+-2.0e-06
5.3e-04+-1.5e-05
7.4e-05+-3.0e-06
Dataset: agrawal_7_8
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.821+-0.001
0.817+-0.007
0.813+-0.010
0.819+-0.009
Processing Time
41.4+-0.9
41.7+-0.9
8.6+-0.3
9.0+-0.3
RAM-Hours
5.8e-03+-2.3e-04
5.9e-05+-2.0e-06
1.1e-04+-5.0e-06
2.9e-05+-2.0e-06
Dataset: agrawal_8_9
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.830+-0.004
0.830+-0.005
0.830+-0.005
0.829+-0.005
Processing Time
30.3+-0.6
30.6+-0.7
7.0+-0.3
7.3+-0.3
RAM-Hours
1.7e-03+-7.1e-05
1.9e-04+-6.0e-06
3.1e-04+-1.7e-05
2.5e-05+-1.0e-06
Dataset: mixed
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.779+-0.039
0.751+-0.054
0.784+-0.043
0.742+-0.074
Processing Time
29.0+-1.3
29.2+-1.3
6.5+-0.4
6.8+-0.5
RAM-Hours
2.1e-03+-1.1e-04
5.6e-05+-5.0e-06
1.9e-05+-3.0e-06
2.0e-05+-2.0e-06
Dataset: randomRBF
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.745+-0.023
0.730+-0.036
0.734+-0.036
0.719+-0.052
Processing Time
46.5+-1.0
46.9+-1.0
9.2+-0.2
9.5+-0.1
RAM-Hours
8.5e-03+-1.9e-04
4.5e-04+-1.9e-05
9.9e-05+-2.0e-06
0.0e+00+-0.0e+00
Dataset: sea_0_1
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.833+-0.004
0.832+-0.005
0.823+-0.019
0.833+-0.008
Processing Time
28.2+-0.8
28.4+-0.8
6.2+-0.4
6.5+-0.4
RAM-Hours
1.4e-03+-8.1e-05
4.8e-04+-2.7e-05
2.6e-04+-2.6e-05
3.8e-05+-4.0e-06
Dataset: sea_1_2
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.834+-0.003
0.833+-0.011
0.832+-0.012
0.830+-0.010
Processing Time
28.3+-0.3
28.5+-0.4
6.0+-0.2
6.3+-0.2
RAM-Hours
3.0e-03+-2.6e-05
1.7e-04+-3.0e-06
4.5e-05+-3.0e-06
8.0e-06+-0.0e+00
Dataset: sea_2_3
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.840+-0.006
0.840+-0.006
0.837+-0.009
0.826+-0.027
Processing Time
27.9+-0.4
28.0+-0.4
5.8+-0.1
6.1+-0.2
RAM-Hours
1.6e-04+-4.0e-06
2.0e-04+-6.0e-06
6.5e-05+-2.0e-06
6.8e-05+-3.0e-06
Dataset: stagger_0_1
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.719+-0.087
0.715+-0.095
0.719+-0.087
0.714+-0.095
Processing Time
38.5+-0.1
38.7+-0.1
7.1+-0.2
7.4+-0.2
RAM-Hours
5.4e-04+-2.0e-06
2.6e-04+-2.0e-06
2.6e-05+-2.0e-06
1.1e-05+-1.0e-06
Dataset: stagger_1_2
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.882+-0.003
0.882+-0.003
0.882+-0.003
0.877+-0.015
Processing Time
33.8+-0.3
34.0+-0.3
6.5+-0.1
6.8+-0.1
RAM-Hours
3.8e-04+-4.0e-06
1.5e-04+-2.0e-06
1.4e-05+-0.0e+00
1.0e-05+-0.0e+00
Dataset: sine_0_1
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.778+-0.022
0.830+-0.023
0.792+-0.044
0.826+-0.025
Processing Time
22.4+-0.3
22.5+-0.3
5.3+-0.1
5.5+-0.1
RAM-Hours
2.6e-04+-5.0e-06
1.0e-06+-0.0e+00
1.2e-04+-3.0e-06
2.1e-04+-8.0e-06
Dataset: sine_1_2
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.775+-0.016
0.796+-0.030
0.781+-0.029
0.778+-0.025
Processing Time
23.5+-0.2
23.6+-0.2
5.2+-0.0
5.4+-0.0
RAM-Hours
1.9e-04+-3.0e-06
3.0e-06+-0.0e+00
2.1e-05+-0.0e+00
1.0e-06+-0.0e+00
Dataset: sine_2_3
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.790+-0.011
0.767+-0.025
0.771+-0.012
0.763+-0.019
Processing Time
23.1+-0.2
23.2+-0.2
5.4+-0.2
5.6+-0.2
RAM-Hours
4.8e-04+-4.0e-06
1.3e-04+-2.0e-06
0.0e+00+-0.0e+00
4.0e-06+-0.0e+00
Dataset: image_segments
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.570+-0.012
0.370+-0.127
0.571+-0.012
0.497+-0.108
Processing Time
67.5+-54.9
68.1+-55.1
32.0+-1.5
33.2+-1.6
RAM-Hours
1.4e-02+-1.5e-02
2.0e-03+-3.4e-03
2.4e-04+-2.0e-05
6.2e-04+-3.9e-05
Dataset: phising
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
0.523+-0.001
0.523+-0.001
0.526+-0.002
0.521+-0.012
Processing Time
18.4+-17.6
18.6+-17.7
8.7+-0.7
9.0+-0.7
RAM-Hours
1.6e-03+-3.2e-03
4.6e-05+-1.6e-04
5.0e-04+-9.3e-05
3.1e-05+-8.0e-06
Mean results for all datasets:
METRICS
Halving
Random Halving
H-NEIGHBORS
H-STEP
Prequential acc.
$0.756\pm0.017$
$0.746\pm0.029$
$0.752\pm0.028$
$0.745\pm0.036$
Processing Time
$36.0\pm4.1$
$36.2\pm4.1$
$8.7\pm0.3$
$9.0\pm0.3$
RAM-Hours
$3.1e-03\pm9.3e-04$
$3.3e-04\pm1.7e-04$
$2.9e-04\pm2.0e-05$
$7.8e-05\pm4.1e-06$
Nemenyi test:
For Prequential acc.:
For Processing time:
For RAM-Hours:
Mean metrics in 25 runs for Window size=50 and large grid