-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_voicehome_metadata.py
136 lines (82 loc) · 3.22 KB
/
create_voicehome_metadata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
"""
import pandas as pd
import os
import glob
from paths import voicehome_path
dev_set = {'home2': ['room1', 'room2', 'room3'],
'home3': ['room1', 'room3']}
n_dev = 20 + 15 + 17 + 17 + 15
eval_set = {'home3': ['room2'],
'home4': ['room1', 'room2', 'room3']}
n_eval = 16 + 18 + 16 + 16
output_dir = 'metadata/voicehome'
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
#%%
rir_list = glob.glob(f'{voicehome_path}/audio/rirs/*.wav')
df_rirs_dev = pd.DataFrame(columns=['home', 'room', 'arrayGeo', 'arrayPos', 'speakerPos', 'file'])
df_rirs_eval = pd.DataFrame(columns=['home', 'room', 'arrayGeo', 'arrayPos', 'speakerPos', 'file'])
rir_list.sort()
for rir in rir_list:
head, tail = os.path.split(rir)
[home, room, arrayGeo, arrayPos, speakerPos] = tail[:-4].split('_')
row = [home, room, arrayGeo, arrayPos, speakerPos]
row.extend([os.path.join('audio', 'rirs', tail)])
if home in dev_set.keys():
if room in dev_set[home]:
df_rirs_dev.loc[len(df_rirs_dev)] = row
if home in eval_set.keys():
if room in eval_set[home]:
df_rirs_eval.loc[len(df_rirs_eval)] = row
df_rirs_dev.to_csv(os.path.join(output_dir,'dev.csv'))
assert len(df_rirs_dev) == n_dev
df_rirs_eval.to_csv(os.path.join(output_dir,'eval.csv'))
assert len(df_rirs_eval) == n_eval
#%%
arrayPos_list = glob.glob(f'{voicehome_path}/annotations/rooms/*arrayPos*')
arrayPos_list.sort()
df_arrayPos = pd.DataFrame(columns=['home', 'room', 'arrayPos', 'text', 'x', 'y', 'z', 'azimuth', 'elevation'])
for ar in arrayPos_list:
head, tail = os.path.split(ar)
row = tail[:-4].split('_')
with open(ar) as f:
lines = f.readlines()
assert len(lines) == 1
row.extend(lines[0].split('\t'))
df_arrayPos.loc[len(df_arrayPos)] = row
df_arrayPos.to_csv(os.path.join(output_dir,'arrayPos.csv'))
#%%
speakerPos_list = glob.glob(f'{voicehome_path}/annotations/rooms/*speakerPos*')
speakerPos_list.sort()
df_speakerPos = pd.DataFrame(columns=['home', 'room', 'speakerPos', 'text', 'x', 'y', 'z', 'azimuth', 'elevation'])
for ar in speakerPos_list:
head, tail = os.path.split(ar)
row = tail[:-4].split('_')
with open(ar) as f:
lines = f.readlines()
assert len(lines) == 1
data = lines[0].split('\t')
if len(data) < 6:
data.extend([''] * (6-len(data)))
row.extend(data)
df_speakerPos.loc[len(df_speakerPos)] = row
df_speakerPos.to_csv(os.path.join(output_dir,'speakerPos.csv'))
#%%
arrayGeo_list = glob.glob(f'{voicehome_path}/annotations/arrays/arrayGeo*')
arrayGeo_list.sort()
df_arrayGeo = pd.DataFrame(columns=['arrayGeo', 'channel', 'mic', 'x', 'y', 'z'])
for ar in arrayGeo_list:
head, tail = os.path.split(ar)
arrayGeo = tail[:-4]
with open(ar) as f:
lines = f.readlines()
channel = 0
for line in lines:
data = line.split('\t')
row = [arrayGeo] + [channel] + data
df_arrayGeo.loc[len(df_arrayGeo)] = row
channel += 1
df_arrayGeo.to_csv(os.path.join(output_dir,'arrayGeo.csv'))